11 Pages • 1,058 Words • PDF • 131.8 KB
Uploaded at 2021-09-24 14:21
This document was submitted by our user and they confirm that they have the consent to share it. Assuming that you are writer or own the copyright of this document, report to us by using this DMCA report button.
Matemática LM2A1-1-Funções (EsPCEx)
Questão 1 (Mackenzie 1996) Na função real definida por f(x) = 5 x, f(a).f(b) é sempre igual a:
a) f (a . b). b) f (a + b). c) f (a/5 + b/5). d) f (5 . a . b). e) f (a5 . b5). f) não sei.
Questão 2
(Mackenzie 1997) Na função real definida por f(x) =
│x│ ≠1, f
vale:
a) b) c) d) e) f) não sei.
Questão 3 (Mackenzie 2010) Considere a função f tal que para todo x real tem-se f(x + 2) = 3f(x) + 2x . Se f(–3) = 1/4 e f(–1) = a, então o valor de a2 é
a) 25/36. b) 36/49. c) 64/100. d) 16/81. e) 49/64. f) não sei.
Questão 4 (CESCEM-68) Seja f (x) uma função cujo domínio é o conjunto dos números inteiros e que associa a todo inteiro par o valor zero e a todo inteiro ímpar o dobro do valor. f(-2) vale:
a) zero. b) não está definida. c) -1 d) -2 e) +2 f) Não sei.
Questão 5 (PUC-76) Qual dos gráficos seguintes representa uma função f de IR*+ em IR?
a)
b)
c)
d)
e) f) Não sei.
Questão 6 (PUC-75) Qual dos gráficos não representa uma função?
a)
b)
c)
d)
e) f) Não sei.
Questão 7 (PUC-76) O dominio da relação
é:
a) IR+
b) IR* c) IR d) {x ∈ IR e x ≠ 2} e) {x ∈ IR e x ≠ ± 2} f) Não sei.
Questão 8 (Fgv 2003) Seja a função f(x) = x2. O valor de f(m + n) - f(m - n) é:
a) 2m2 + 2n2. b) 2n2. c) 4mn. d) 2m2. e) 0. f) não sei.
Questão 9 (Fgv 2015) O gráfico representa a função f.
Considerando -2 ≤ x ≤ 3, o conjunto solução da equação f(x + 3) = f(x) + 1 possui
a) um único elemento. b) apenas dois elementos. c) apenas três elementos. d) apenas quatro elementos. e) infinitos elementos. f) Não sei.
Questão 10 (CESCEM-76) Se f : A B é uma função e se D ⊂ A, chamamos de imagem de D pela função f ao conjunto anotado e definido por: f = {y ∈ B / existe x ∈ D tal que f (x) = y}. Se g é a função de IR em IR cujo gráfico está representado abaixo, então a imagem g < [5; 9] > do intervalo fechado [5; 9] é:
a) (2; 6) b) [2; 6] c) [3; 6] d) (3; 6)
e) [2; 4] f) Não sei.
Questão 11 (CESCEM - 69) Seja f (n) uma função definida, para todo n inteiro e pelas relações
O valor de f (0) é:
a) b) c) d) e) nenhuma das respostas anteriores f) Não sei.
Questão 12 (CESCEM - 69) Seja f (n) uma função definida, para todo n inteiro e pelas relações
O valor de f (-2) é:
a)
b) c) d) e) nenhuma das respostas anteriores
f) Não sei.
Questão 13 (PUC - 77) O domínio da relação P = {(x, y) ∈ IN IN) / y = x - 5} é:
a) IN b) IN* c) IR d) {x ∈ IN / x ≥ 6} e) {x ∈ IN / x ≥ 5} f) Não sei.
Questão 14 (PUC - 77) Se x e y são elementos do conjunto R, qual das relações é função de x?
a) {(x, y) / x = y2 - 1} b) {(x, y) / x =
}
c) {(x, y) / y =
}
d) d) {(x, y) / x < y} e) {(x, y) / y = x2 + 1} f) Não sei.
Questão 15 (Aman 2012) Considere a função real f(x), cujo gráfico está representado na figura, e a função real g(x), definida por g(x) = f(x - 1) + 1
O valor de
;é
a) -3 b) -2 c) 0 d) 2 e) 3 f) não sei
Questão 16 (CESCEM-71) Dizemos que uma função real é par se f(x) = f(-x) e que é ímpar se f(x) = -f(-x). Das alternativas que seguem indique qual a falsa:
a) o produto de duas funções ímpares é uma função ímpar b) o produto de duas funções pares é uma função par c) a soma de duas funções ímpares é uma função ímpar d) a soma de duas funções pares é uma função par e) nenhuma das respostas anteriores f) Não sei.
Questão 17 (Espcex (Aman) 2011) A represa de uma usina hidroelétrica está situada em uma região em que a duração do período chuvoso é 100 dias. A partir dos dados hidrológicos dessa região, os projetistas concluíram que a altura do nível da represa varia, dentro do período chuvoso, segundo a função real
Em que N(t) é a altura do nível da represa, medido em metros, t é o número de dias, contados a partir do início do período chuvoso.
Segundo esse modelo matemático, o número de dias, dentro do período chuvoso, em que a altura do nível da represa é maior ou igual a 12 metros é
a) 40. b) 41. c) 53. d) 56. e) 60. f) não sei.
Questão 18 (Epcar (Afa) 2017) Durante 16 horas, desde a abertura de certa confeitaria, observou-se que a quantidade q(t) de unidades vendidas do doce “amor em pedaço”, entre os instantes (t-1) e t, é dada pela lei q(t) = ||t-8| + t - 14|, em que t representa o tempo, em horas, e t {1, 2, 3,..., 16} É correto afirmar que
a) entre todos os instantes foi vendida, pelo menos, uma unidade de “amor em pedaço”. b) a menor quantidade vendida em qualquer instante corresponde a 6 unidades. c) em nenhum momento vendem-se exatamente 2 unidades. d) o máximo de unidades vendidas entre todos os instantes foi 10 e) Não sei
Questão 19 A empresa Alfa Tecidos dispõe de 5 teares que funcionam 6 horas por dia, simultaneamente. Essa empresa fabrica 1800 m de tecido, com 1,20 m de largura em 4 dias. Considerando que um dos teares parou de funcionar, em quantos dias, aproximadamente, a tecelagem fabricará 2000 m do mesmo tecido, com largura de 0,80 m, e com cada uma de suas máquinas funcionando 8 horas por dia?
a) 2 dias b) 3 dias
c) 4 dias d) 5 dias e) 6 dias