1,022 Pages • 676,535 Words • PDF • 35.7 MB
Uploaded at 2021-09-24 09:15
This document was submitted by our user and they confirm that they have the consent to share it. Assuming that you are writer or own the copyright of this document, report to us by using this DMCA report button.
SOLUTION MANUAL
608070 _ISM_ThomasCalc_WeirHass_ttl.qxd:harsh_569709_ttl
9/3/09
3:11 PM
Page 1
INSTRUCTOR’S SOLUTIONS MANUAL SINGLE VARIABLE Collin County Community College
WILLIAM ARDIS
THOMAS’ CALCULUS TWELFTH EDITION BASED ON THE ORIGINAL WORK BY
George B. Thomas, Jr. Massachusetts Institute of Technology
AS
REVISED BY
Maurice D. Weir Naval Postgraduate School
Joel Hass
University of California, Davis
608070 _ISM_ThomasCalc_WeirHass_ttl.qxd:harsh_569709_ttl
9/3/09
3:11 PM
Page 2
This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs. Reproduced by Pearson Addison-Wesley from electronic files supplied by the author. Copyright © 2010, 2005, 2001 Pearson Education, Inc. Publishing as Pearson Addison-Wesley, 75 Arlington Street, Boston, MA 02116. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. ISBN-13: 978-0-321-60807-9 ISBN-10: 0-321-60807-0 1 2 3 4 5 6 BB 12 11 10 09
PREFACE TO THE INSTRUCTOR This Instructor's Solutions Manual contains the solutions to every exercise in the 12th Edition of THOMAS' CALCULUS by Maurice Weir and Joel Hass, including the Computer Algebra System (CAS) exercises. The corresponding Student's Solutions Manual omits the solutions to the even-numbered exercises as well as the solutions to the CAS exercises (because the CAS command templates would give them all away). In addition to including the solutions to all of the new exercises in this edition of Thomas, we have carefully revised or rewritten every solution which appeared in previous solutions manuals to ensure that each solution ì conforms exactly to the methods, procedures and steps presented in the text ì is mathematically correct ì includes all of the steps necessary so a typical calculus student can follow the logical argument and algebra ì includes a graph or figure whenever called for by the exercise, or if needed to help with the explanation ì is formatted in an appropriate style to aid in its understanding Every CAS exercise is solved in both the MAPLE and MATHEMATICA computer algebra systems. A template showing an example of the CAS commands needed to execute the solution is provided for each exercise type. Similar exercises within the text grouping require a change only in the input function or other numerical input parameters associated with the problem (such as the interval endpoints or the number of iterations). For more information about other resources available with Thomas' Calculus, visit http://pearsonhighered.com.
TABLE OF CONTENTS 1 Functions 1 1.1 1.2 1.3 1.4
Functions and Their Graphs 1 Combining Functions; Shifting and Scaling Graphs 8 Trigonometric Functions 19 Graphing with Calculators and Computers 26 Practice Exercises 30 Additional and Advanced Exercises 38
2 Limits and Continuity 43 2.1 2.2 2.3 2.4 2.5 2.6
Rates of Change and Tangents to Curves 43 Limit of a Function and Limit Laws 46 The Precise Definition of a Limit 55 One-Sided Limits 63 Continuity 67 Limits Involving Infinity; Asymptotes of Graphs 73 Practice Exercises 82 Additional and Advanced Exercises 86
3 Differentiation 93 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
Tangents and the Derivative at a Point 93 The Derivative as a Function 99 Differentiation Rules 109 The Derivative as a Rate of Change 114 Derivatives of Trigonometric Functions 120 The Chain Rule 127 Implicit Differentiation 135 Related Rates 142 Linearizations and Differentials 146 Practice Exercises 151 Additional and Advanced Exercises 162
4 Applications of Derivatives 167 4.1 4.2 4.3 4.4 4.5 4.6 4.7
Extreme Values of Functions 167 The Mean Value Theorem 179 Monotonic Functions and the First Derivative Test 188 Concavity and Curve Sketching 196 Applied Optimization 216 Newton's Method 229 Antiderivatives 233 Practice Exercises 239 Additional and Advanced Exercises 251
5 Integration 257 5.1 5.2 5.3 5.4 5.5 5.6
Area and Estimating with Finite Sums 257 Sigma Notation and Limits of Finite Sums 262 The Definite Integral 268 The Fundamental Theorem of Calculus 282 Indefinite Integrals and the Substitution Rule 290 Substitution and Area Between Curves 296 Practice Exercises 310 Additional and Advanced Exercises 320
6 Applications of Definite Integrals 327 6.1 6.2 6.3 6.4 6.5 6.6
Volumes Using Cross-Sections 327 Volumes Using Cylindrical Shells 337 Arc Lengths 347 Areas of Surfaces of Revolution 353 Work and Fluid Forces 358 Moments and Centers of Mass 365 Practice Exercises 376 Additional and Advanced Exercises 384
7 Transcendental Functions 389 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8
Inverse Functions and Their Derivatives 389 Natural Logarithms 396 Exponential Functions 403 Exponential Change and Separable Differential Equations 414 ^ Indeterminate Forms and L'Hopital's Rule 418 Inverse Trigonometric Functions 425 Hyperbolic Functions 436 Relative Rates of Growth 443 Practice Exercises 447 Additional and Advanced Exercises 458
8 Techniques of Integration 461 8.1 8.2 8.3 8.4 8.5 8.6 8.7
Integration by Parts 461 Trigonometric Integrals 471 Trigonometric Substitutions 478 Integration of Rational Functions by Partial Fractions 484 Integral Tables and Computer Algebra Systems 491 Numerical Integration 502 Improper Integrals 510 Practice Exercises 518 Additional and Advanced Exercises 528
9 First-Order Differential Equations 537 9.1 9.2 9.3 9.4 9.5
Solutions, Slope Fields and Euler's Method 537 First-Order Linear Equations 543 Applications 546 Graphical Solutions of Autonomous Equations 549 Systems of Equations and Phase Planes 557 Practice Exercises 562 Additional and Advanced Exercises 567
10 Infinite Sequences and Series 569 10.1 Sequences 569 10.2 Infinite Series 577 10.3 The Integral Test 583 10.4 Comparison Tests 590 10.5 The Ratio and Root Tests 597 10.6 Alternating Series, Absolute and Conditional Convergence 602 10.7 Power Series 608 10.8 Taylor and Maclaurin Series 617 10.9 Convergence of Taylor Series 621 10.10 The Binomial Series and Applications of Taylor Series 627 Practice Exercises 634 Additional and Advanced Exercises 642
TABLE OF CONTENTS 10 Infinite Sequences and Series 569 10.1 Sequences 569 10.2 Infinite Series 577 10.3 The Integral Test 583 10.4 Comparison Tests 590 10.5 The Ratio and Root Tests 597 10.6 Alternating Series, Absolute and Conditional Convergence 602 10.7 Power Series 608 10.8 Taylor and Maclaurin Series 617 10.9 Convergence of Taylor Series 621 10.10 The Binomial Series and Applications of Taylor Series 627 Practice Exercises 634 Additional and Advanced Exercises 642
11 Parametric Equations and Polar Coordinates 647 11.1 11.2 11.3 11.4 11.5 11.6 11.7
Parametrizations of Plane Curves 647 Calculus with Parametric Curves 654 Polar Coordinates 662 Graphing in Polar Coordinates 667 Areas and Lengths in Polar Coordinates 674 Conic Sections 679 Conics in Polar Coordinates 689 Practice Exercises 699 Additional and Advanced Exercises 709
12 Vectors and the Geometry of Space 715 12.1 12.2 12.3 12.4 12.5 12.6
Three-Dimensional Coordinate Systems 715 Vectors 718 The Dot Product 723 The Cross Product 728 Lines and Planes in Space 734 Cylinders and Quadric Surfaces 741 Practice Exercises 746 Additional Exercises 754
13 Vector-Valued Functions and Motion in Space 759 13.1 13.2 13.3 13.4 13.5 13.6
Curves in Space and Their Tangents 759 Integrals of Vector Functions; Projectile Motion 764 Arc Length in Space 770 Curvature and Normal Vectors of a Curve 773 Tangential and Normal Components of Acceleration 778 Velocity and Acceleration in Polar Coordinates 784 Practice Exercises 785 Additional Exercises 791
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
14 Partial Derivatives 795 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10
Functions of Several Variables 795 Limits and Continuity in Higher Dimensions 804 Partial Derivatives 810 The Chain Rule 816 Directional Derivatives and Gradient Vectors 824 Tangent Planes and Differentials 829 Extreme Values and Saddle Points 836 Lagrange Multipliers 849 Taylor's Formula for Two Variables 857 Partial Derivatives with Constrained Variables 859 Practice Exercises 862 Additional Exercises 876
15 Multiple Integrals 881 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8
Double and Iterated Integrals over Rectangles 881 Double Integrals over General Regions 882 Area by Double Integration 896 Double Integrals in Polar Form 900 Triple Integrals in Rectangular Coordinates 904 Moments and Centers of Mass 909 Triple Integrals in Cylindrical and Spherical Coordinates 914 Substitutions in Multiple Integrals 922 Practice Exercises 927 Additional Exercises 933
16 Integration in Vector Fields 939 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8
Line Integrals 939 Vector Fields and Line Integrals; Work, Circulation, and Flux 944 Path Independence, Potential Functions, and Conservative Fields 952 Green's Theorem in the Plane 957 Surfaces and Area 963 Surface Integrals 972 Stokes's Theorem 980 The Divergence Theorem and a Unified Theory 984 Practice Exercises 989 Additional Exercises 997
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
CHAPTER 1 FUNCTIONS 1.1 FUNCTIONS AND THEIR GRAPHS 1. domain œ (_ß _); range œ [1ß _)
2. domain œ [0ß _); range œ (_ß 1]
3. domain œ Ò2ß _); y in range and y œ È5x 10 ! Ê y can be any positive real number Ê range œ Ò!ß _). 4. domain œ (_ß 0Ó Ò3, _); y in range and y œ Èx2 3x ! Ê y can be any positive real number Ê range œ Ò!ß _). 5. domain œ (_ß 3Ñ Ð3, _); y in range and y œ Ê3 t!Ê
4 3t
4 3t,
now if t 3 Ê 3 t ! Ê
4 3t
!, or if t 3
! Ê y can be any nonzero real number Ê range œ Ð_ß 0Ñ Ð!ß _).
6. domain œ (_ß %Ñ Ð4, 4Ñ Ð4, _); y in range and y œ 2
% t 4 Ê 16 Ÿ t 16 ! Ê nonzero real number Ê range œ Ð_ß
# "' 18 Ó
Ÿ
2 t2 16
2 t2 16 ,
2 t2 16
now if t % Ê t2 16 ! Ê 2
!, or if t % Ê t 16 ! Ê
2 t2 16
!, or if
! Ê y can be any
Ð!ß _).
7. (a) Not the graph of a function of x since it fails the vertical line test. (b) Is the graph of a function of x since any vertical line intersects the graph at most once. 8. (a) Not the graph of a function of x since it fails the vertical line test. (b) Not the graph of a function of x since it fails the vertical line test. #
9. base œ x; (height)# ˆ #x ‰ œ x# Ê height œ
È3 #
x; area is a(x) œ
" #
(base)(height) œ
" #
(x) Š
È3 # x‹
œ
È3 4
x# ;
perimeter is p(x) œ x x x œ 3x. 10. s œ side length Ê s# s# œ d# Ê s œ
d È2
; and area is a œ s# Ê a œ
" #
d#
11. Let D œ diagonal length of a face of the cube and j œ the length of an edge. Then j# D# œ d# and D# œ 2j# Ê 3j# œ d# Ê j œ
d È3
. The surface area is 6j# œ
6d# 3
12. The coordinates of P are ˆxß Èx‰ so the slope of the line joining P to the origin is m œ ˆx, Èx‰ œ ˆ m"# ,
#
œ 2d# and the volume is j$ œ Š d3 ‹ Èx x
œ
" Èx
$Î#
œ
(x 0). Thus,
"‰ m .
13. 2x 4y œ 5 Ê y œ "# x 54 ; L œ ÈÐx 0Ñ2 Ðy 0Ñ2 œ Éx2 Ð "# x 54 Ñ2 œ Éx2 4" x2 54 x œ É 54 x2 54 x
25 16
œ É 20x
2
20x 25 16
œ
È20x2 20x 25 4
14. y œ Èx 3 Ê y2 3 œ x; L œ ÈÐx 4Ñ2 Ðy 0Ñ2 œ ÈÐy2 3 4Ñ2 y2 œ ÈÐy2 1Ñ2 y2 œ Èy4 2y2 1 y2 œ Èy4 y2 1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
d$ 3È 3
25 16
.
2
Chapter 1 Functions
15. The domain is a_ß _b.
16. The domain is a_ß _b.
17. The domain is a_ß _b.
18. The domain is Ð_ß !Ó.
19. The domain is a_ß !b a!ß _b.
20. The domain is a_ß !b a!ß _b.
21. The domain is a_ß 5b Ð5ß 3Ó Ò3, 5Ñ a5, _b 22. The range is Ò2, 3Ñ. 23. Neither graph passes the vertical line test (a)
(b)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.1 Functions and Their Graphs 24. Neither graph passes the vertical line test (a)
(b)
Ú xyœ" Þ Ú yœ1x Þ or or kx yk œ 1 Í Û Í Û ß ß Ü x y œ " à Ü y œ " x à 25.
x y
0 0
1 1
27. Faxb œ œ
2 0
26.
x y
0 1
1 0
2 0
" , x0 28. Gaxb œ œ x x, 0 Ÿ x
4 x2 , x Ÿ 1 x2 2x, x 1
29. (a) Line through a!ß !b and a"ß "b: y œ x; Line through a"ß "b and a#ß !b: y œ x 2 x, 0 Ÿ x Ÿ 1 f(x) œ œ x 2, 1 x Ÿ 2 Ú Ý 2, ! Ÿ x " Ý !ß " Ÿ x # (b) f(x) œ Û Ý Ý 2ß # Ÿ x $ Ü !ß $ Ÿ x Ÿ % 30. (a) Line through a!ß 2b and a#ß !b: y œ x 2 " Line through a2ß "b and a&ß !b: m œ !& # œ x #, 0 x Ÿ # f(x) œ œ " $ x &$ , # x Ÿ &
f(x) œ œ
œ "$ , so y œ "$ ax 2b " œ "$ x
$ ! ! Ð"Ñ œ " $ % #! œ #
(b) Line through a"ß !b and a!ß $b: m œ Line through a!ß $b and a#ß "b: m œ
" $
& $
$, so y œ $x $ œ #, so y œ #x $
$x $, " x Ÿ ! #x $, ! x Ÿ #
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
3
4
Chapter 1 Functions
31. (a) Line through a"ß "b and a!ß !b: y œ x Line through a!ß "b and a"ß "b: y œ " Line through a"ß "b and a$ß !b: m œ !" $" œ Ú x " Ÿ x ! " !xŸ" f(x) œ Û Ü "# x $# "x$
" #
(b) Line through a2ß 1b and a0ß 0b: y œ 12 x Line through a0ß 2b and a1ß 0b: y œ 2x 2 Line through a1ß 1b and a3ß 1b: y œ 1 32. (a) Line through ˆ T# ß !‰ and aTß "b: m œ faxb œ
(b)
"! TaTÎ#b
œ "# , so y œ "# ax "b " œ "# x
Ú
1 2x
faxb œ Û 2x 2 Ü 1
$ #
2 Ÿ x Ÿ 0 0xŸ1 1xŸ3
œ T# , so y œ T# ˆx T# ‰ 0 œ T# x "
!, 0 Ÿ x Ÿ T# # T T x ", # x Ÿ T
Ú A, Ý Ý Ý Aß faxb œ Û Aß Ý Ý Ý Ü Aß
! Ÿ x T# T # Ÿx T T Ÿ x $#T $T # Ÿ x Ÿ #T
33. (a) ÚxÛ œ 0 for x − [0ß 1)
(b) ÜxÝ œ 0 for x − (1ß 0]
34. ÚxÛ œ ÜxÝ only when x is an integer. 35. For any real number x, n Ÿ x Ÿ n ", where n is an integer. Now: n Ÿ x Ÿ n " Ê Ðn "Ñ Ÿ x Ÿ n. By definition: ÜxÝ œ n and ÚxÛ œ n Ê ÚxÛ œ n. So ÜxÝ œ ÚxÛ for all x − d . 36. To find f(x) you delete the decimal or fractional portion of x, leaving only the integer part.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.1 Functions and Their Graphs 37. Symmetric about the origin Dec: _ x _ Inc: nowhere
38. Symmetric about the y-axis Dec: _ x ! Inc: ! x _
39. Symmetric about the origin Dec: nowhere Inc: _ x ! !x_
40. Symmetric about the y-axis Dec: ! x _ Inc: _ x !
41. Symmetric about the y-axis Dec: _ x Ÿ ! Inc: ! x _
42. No symmetry Dec: _ x Ÿ ! Inc: nowhere
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
5
6
Chapter 1 Functions
43. Symmetric about the origin Dec: nowhere Inc: _ x _
44. No symmetry Dec: ! Ÿ x _ Inc: nowhere
45. No symmetry Dec: ! Ÿ x _ Inc: nowhere
46. Symmetric about the y-axis Dec: _ x Ÿ ! Inc: ! x _
47. Since a horizontal line not through the origin is symmetric with respect to the y-axis, but not with respect to the origin, the function is even. 48. faxb œ x& œ
" x&
and faxb œ axb& œ
" a x b&
œ ˆ x"& ‰ œ faxb. Thus the function is odd.
49. Since faxb œ x# " œ axb# " œ faxb. The function is even. 50. Since Òfaxb œ x# xÓ Á Òfaxb œ axb# xÓ and Òfaxb œ x# xÓ Á Òfaxb œ axb# xÓ the function is neither even nor odd. 51. Since gaxb œ x$ x, gaxb œ x$ x œ ax$ xb œ gaxb. So the function is odd. 52. gaxb œ x% $x# " œ axb% $axb# " œ gaxbß thus the function is even. 53. gaxb œ
" x# "
54. gaxb œ
x x# " ;
55. hatb œ
" t ";
œ
" axb# "
œ gaxb. Thus the function is even.
gaxb œ x#x" œ gaxb. So the function is odd.
hatb œ
" t " ;
h at b œ
" " t.
Since hatb Á hatb and hatb Á hatb, the function is neither even nor odd.
56. Since l t$ | œ l atb$ |, hatb œ hatb and the function is even.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.1 Functions and Their Graphs 57. hatb œ 2t ", hatb œ 2t ". So hatb Á hatb. hatb œ 2t ", so hatb Á hatb. The function is neither even nor odd. 58. hatb œ 2l t l " and hatb œ 2l t l " œ 2l t l ". So hatb œ hatb and the function is even. 59. s œ kt Ê 25 œ kÐ75Ñ Ê k œ
" 3
Ê s œ 3" t; 60 œ 3" t Ê t œ 180
60. K œ c v# Ê 12960 œ ca18b2 Ê c œ 40 Ê K œ 40v# ; K œ 40a10b# œ 4000 joules 61. r œ 62. P œ
k s
Ê6œ
k v
k 4
Ê k œ 24 Ê r œ
Ê 14.7 œ
k 1000
24 s ;
10 œ
24 s
Ê k œ 14700 Ê P œ
Êsœ
14700 v ;
12 5
23.4 œ
14700 v
Êvœ
24500 39
¸ 628.2 in3
63. v œ f(x) œ xÐ"% 2xÑÐ22 2xÑ œ %x$ 72x# $!)x; ! x 7Þ 64. (a) Let h œ height of the triangle. Since the triangle is isosceles, AB # AB # œ 2# Ê AB œ È2Þ So, #
h# "# œ ŠÈ2‹ Ê h œ " Ê B is at a!ß "b Ê slope of AB œ " Ê The equation of AB is y œ f(x) œ x "; x − Ò!ß "Ó. (b) AÐxÑ œ 2x y œ 2xÐx "Ñ œ 2x# #x; x − Ò!ß "Ó. 65. (a) Graph h because it is an even function and rises less rapidly than does Graph g. (b) Graph f because it is an odd function. (c) Graph g because it is an even function and rises more rapidly than does Graph h. 66. (a) Graph f because it is linear. (b) Graph g because it contains a!ß "b. (c) Graph h because it is a nonlinear odd function. x #
67. (a) From the graph, (b)
x #
1
x 0:
x #
x 0:
x 2
4 x
1
Ê 4 x
x #
1
4 x
Ê x − (2ß 0) (%ß _)
1 4x 0 # 2x8 0 Ê x 2x
0 Ê
(x4)(x2) #x
0
(x4)(x2) #x
0
Ê x 4 since x is positive; 1
4 x
0 Ê
x# 2x8 2x
0 Ê
Ê x 2 since x is negative; sign of (x 4)(x 2) ïïïïïðïïïïïðïïïïî 2 % Solution interval: (#ß 0) (%ß _)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
7
8
Chapter 1 Functions 3 2 x 1 x 1 3 2 x 1 x 1
68. (a) From the graph, (b) Case x 1:
Ê x − (_ß 5) (1ß 1) Ê
3(x1) x 1
2
Ê 3x 3 2x 2 Ê x 5. Thus, x − (_ß 5) solves the inequality. Case 1 x 1:
3 x 1
2 x 1
Ê
3(x1) x 1
2
Ê 3x 3 2x 2 Ê x 5 which is true if x 1. Thus, x − (1ß 1) solves the inequality. 3 Case 1 x: x1 x2 1 Ê 3x 3 2x 2 Ê x 5 which is never true if 1 x, so no solution here. In conclusion, x − (_ß 5) (1ß 1). 69. A curve symmetric about the x-axis will not pass the vertical line test because the points ax, yb and ax, yb lie on the same vertical line. The graph of the function y œ faxb œ ! is the x-axis, a horizontal line for which there is a single y-value, !, for any x. 70. price œ 40 5x, quantity œ 300 25x Ê Raxb œ a40 5xba300 25xb 71. x2 x2 œ h2 Ê x œ
h È2
œ
È2 h 2 ;
cost œ 5a2xb 10h Ê Cahb œ 10Š
È2 h 2 ‹
10h œ 5hŠÈ2 2‹
72. (a) Note that 2 mi = 10,560 ft, so there are È800# x# feet of river cable at $180 per foot and a10,560 xb feet of land cable at $100 per foot. The cost is Caxb œ 180È800# x# 100a10,560 xb. (b) Ca!b œ $"ß #!!ß !!! Ca&!!b ¸ $"ß "(&ß )"# Ca"!!!b ¸ $"ß ")'ß &"# Ca"&!!b ¸ $"ß #"#ß !!! Ca#!!!b ¸ $"ß #%$ß ($# Ca#&!!b ¸ $"ß #()ß %(* Ca$!!!b ¸ $"ß $"%ß )(! Values beyond this are all larger. It would appear that the least expensive location is less than 2000 feet from the point P. 1.2 COMBINING FUNCTIONS; SHIFTING AND SCALING GRAPHS 1. Df : _ x _, Dg : x 1 Ê Df
g
œ Dfg : x 1. Rf : _ y _, Rg : y 0, Rf g : y 1, Rfg : y 0
2. Df : x 1 0 Ê x 1, Dg : x 1 0 Ê x 1. Therefore Df Rf œ Rg : y 0, Rf g : y È2, Rfg : y 0
g
œ Dfg : x 1.
3. Df : _ x _, Dg : _ x _, DfÎg : _ x _, DgÎf : _ x _, Rf : y œ 2, Rg : y 1, RfÎg : 0 y Ÿ 2, RgÎf : "# Ÿ y _ 4. Df : _ x _, Dg : x 0 , DfÎg : x 0, DgÎf : x 0; Rf : y œ 1, Rg : y 1, RfÎg : 0 y Ÿ 1, RgÎf : 1 Ÿ y _ 5. (a) 2 (d) (x 5)# 3 œ x# 10x 22 (g) x 10
(b) 22 (e) 5 (h) (x# 3)# 3 œ x% 6x# 6
(c) x# 2 (f) 2
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.2 Combining Functions; Shifting and Scaling Graphs 6. (a) "3 (d)
(b) 2
" x
(c)
(e) 0
(g) x 2
(h)
(f)
" " x 1 1
œ
x x
"
# 1
x" x#
œ
" x 1 3 4
1œ
x x1
7. af‰g‰hbaxb œ fagahaxbbb œ faga4 xbb œ fa3a4 xbb œ fa12 3xb œ a12 3xb 1 œ 13 3x 8. af‰g‰hbaxb œ fagahaxbbb œ fagax2 bb œ fa2ax2 b 1b œ fa2x2 1b œ 3a2x2 1b 4 œ 6x2 1 9. af‰g‰hbaxb œ fagahaxbbb œ fˆgˆ 1x ‰‰ œ fŠ 1 1 % ‹ œ fˆ 1 x 4x ‰ œ É 1 x 4x " œ É 15x4x" x
2
10. af‰g‰hbaxb œ fagahaxbbb œ fŠgŠÈ2 x‹‹ œ f
ŠÈ2 x‹ 2
ŠÈ2 x‹
œ fˆ $ x ‰ œ 1 2x
2 x $ x 2 3 $2 xx
8 3x 7 2x
œ
11. (a) af‰gbaxb (d) a j‰jbaxb
(b) a j‰gbaxb (e) ag‰h‰f baxb
(c) ag‰gbaxb (f) ah‰j‰f baxb
12. (a) af‰jbaxb (d) af‰f baxb
(b) ag‰hbaxb (e) a j‰g‰f baxb
(c) ah‰hbaxb (f) ag‰f‰hbaxb
g(x)
f(x)
(f ‰ g)(x)
(a)
x7
Èx
Èx 7
(b)
x2
3x
3(x 2) œ 3x 6
(c)
x#
Èx 5
Èx# 5
(d)
x x1
x x1
" x1 " x
1
13.
(e) (f)
" x
gaxb" g ax b
œ
x x (x1)
œx
x
" x
x
" lx "l .
14. (a) af‰gbaxb œ lgaxbl œ (b) af‰gbaxb œ
x x 1 x x 1 1
x x"
œ
Ê"
" g ax b
œ
x x"
Ê"
x x"
œ
" g ax b
Ê
" x"
œ
" gaxb ß so
gaxb œ x ".
(c) Since af‰gbaxb œ Ègaxb œ lxl, gaxb œ x . (d) Since af‰gbaxb œ fˆÈx‰ œ l x l, faxb œ x# . (Note that the domain of the composite is Ò!ß _Ñ.) #
The completed table is shown. Note that the absolute value sign in part (d) is optional. gaxb faxb af‰gbaxb " " lxl x" lx "l x" x# Èx
x" x
Èx #
x
15. (a) faga1bb œ fa1b œ 1 (d) gaga2bb œ ga0b œ 0
x x"
lxl lxl (b) gafa0bb œ ga2b œ 2 (e) gafa2bb œ ga1b œ 1
(c) fafa1bb œ fa0b œ 2 (f) faga1bb œ fa1b œ 0
16. (a) faga0bb œ fa1b œ 2 a1b œ 3, where ga0b œ 0 1 œ 1 (b) gafa3bb œ ga1b œ a1b œ 1, where fa3b œ 2 3 œ 1 (c) gaga1bb œ ga1b œ 1 1 œ 0, where ga1b œ a1b œ 1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
9
10
Chapter 1 Functions (d) fafa2bb œ fa0b œ 2 0 œ 2, where fa2b œ 2 2 œ 0 (e) gafa0bb œ ga2b œ 2 1 œ 1, where fa0b œ 2 0 œ 2 (f) fˆgˆ "# ‰‰ œ fˆ #" ‰ œ 2 ˆ #" ‰ œ 5# , where gˆ "# ‰ œ "# 1 œ "#
17. (a) af‰gbaxb œ fagaxbb œ É 1x 1 œ É 1 x x ag‰f baxb œ gafaxbb œ
1 Èx 1
(b) Domain af‰gb: Ð_, 1Ó Ð0, _Ñ, domain ag‰f b: Ð1, _Ñ (c) Range af‰gb: Ð1, _Ñ, range ag‰f b: Ð0, _Ñ 18. (a) af‰gbaxb œ fagaxbb œ 1 2Èx x ag‰f baxb œ gafaxbb œ 1 kxk (b) Domain af‰gb: Ò0, _Ñ, domain ag‰f b: Ð_, _Ñ (c) Range af‰gb: Ð0, _Ñ, range ag‰f b: Ð_, 1Ó 19. af‰gbaxb œ x Ê fagaxbb œ x Ê
g ax b g ax b 2
œ x Ê gaxb œ agaxb 2bx œ x † gaxb 2x
Ê gaxb x † gaxb œ 2x Ê gaxb œ 1 2x x œ
2x x1
20. af‰gbaxb œ x 2 Ê fagaxbb œ x 2 Ê 2agaxbb3 4 œ x 2 Ê agaxbb3 œ 21. (a) y œ (x 7)#
(b) y œ (x 4)#
22. (a) y œ x# 3
(b) y œ x# 5
x6 2
3 x6 Ê gaxb œ É 2
23. (a) Position 4
(b) Position 1
(c) Position 2
(d) Position 3
24. (a) y œ (x 1)# 4
(b) y œ (x 2)# 3
(c) y œ (x 4)# 1
(d) y œ (x 2)#
25.
26.
27.
28.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.2 Combining Functions; Shifting and Scaling Graphs 29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
11
12
Chapter 1 Functions
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.2 Combining Functions; Shifting and Scaling Graphs 53.
54.
55. (a) domain: [0ß 2]; range: [#ß $]
(b) domain: [0ß 2]; range: [1ß 0]
(c) domain: [0ß 2]; range: [0ß 2]
(d) domain: [0ß 2]; range: [1ß 0]
(e) domain: [2ß 0]; range: [!ß 1]
(f) domain: [1ß 3]; range: [!ß "]
(g) domain: [2ß 0]; range: [!ß "]
(h) domain: [1ß 1]; range: [!ß "]
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
13
14
Chapter 1 Functions
56. (a) domain: [0ß 4]; range: [3ß 0]
(b) domain: [4ß 0]; range: [!ß $]
(c) domain: [4ß 0]; range: [!ß $]
(d) domain: [4ß 0]; range: ["ß %]
(e) domain: [#ß 4]; range: [3ß 0]
(f) domain: [2ß 2]; range: [3ß 0]
(g) domain: ["ß 5]; range: [3ß 0]
(h) domain: [0ß 4]; range: [0ß 3]
58. y œ a2xb# 1 œ %x# 1
57. y œ 3x# 3 59. y œ "# ˆ"
"‰ x#
œ
" #
" #x#
60. y œ 1
" axÎ$b#
œ1
61. y œ È%x 1
62. y œ 3Èx 1
# 63. y œ É% ˆ x# ‰ œ "# È16 x#
64. y œ "$ È% x#
65. y œ " a3xb$ œ " 27x$
66. y œ " ˆ x# ‰ œ "
$
* x#
x$ )
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.2 Combining Functions; Shifting and Scaling Graphs 67. Let y œ È#x " œ faxb and let gaxb œ x"Î# , "Î# "Î# haxb œ ˆx " ‰ , iaxb œ È#ˆx " ‰ , and #
#
"Î# jaxb œ ’È#ˆx "# ‰ “ œ faBb. The graph of
haxb is the graph of gaxb shifted left
" #
unit; the
graph of iaxb is the graph of haxb stretched vertically by a factor of È#; and the graph of jaxb œ faxb is the graph of iaxb reflected across the x-axis. 68. Let y œ È"
x #
œ faxbÞ Let gaxb œ axb"Î# ,
haxb œ ax #b"Î# , and iaxb œ œ È"
x #
" È # a x
#b"Î#
œ faxbÞ The graph of gaxb is the
graph of y œ Èx reflected across the x-axis. The graph of haxb is the graph of gaxb shifted right two units. And the graph of iaxb is the graph of haxb compressed vertically by a factor of È#. 69. y œ faxb œ x$ . Shift faxb one unit right followed by a shift two units up to get gaxb œ ax "b3 #.
70. y œ a" Bb$ # œ Òax "b$ a#bÓ œ faxb. Let gaxb œ x$ , haxb œ ax "b$ , iaxb œ ax "b$ a#b, and jaxb œ Òax "b$ a#bÓ. The graph of haxb is the graph of gaxb shifted right one unit; the graph of iaxb is the graph of haxb shifted down two units; and the graph of faxb is the graph of iaxb reflected across the x-axis.
71. Compress the graph of faxb œ of 2 to get gaxb œ unit to get haxb œ
" #x . Then " #x ".
" x
horizontally by a factor
shift gaxb vertically down 1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
15
16
Chapter 1 Functions
72. Let faxb œ œ
"
#
ŠxÎÈ#‹
" x#
and gaxb œ
"œ
# x#
"œ
" # ’Š"ÎÈ#‹B“
" # Š B# ‹
"
"Þ Since
È# ¸ "Þ%, we see that the graph of faxb stretched horizontally by a factor of 1.4 and shifted up 1 unit is the graph of gaxb.
$ 73. Reflect the graph of y œ faxb œ È x across the x-axis $ to get gaxb œ Èx.
74. y œ faxb œ a#xb#Î$ œ Òa"ba#bxÓ#Î$ œ a"b#Î$ a#xb#Î$ œ a#xb#Î$ . So the graph of faxb is the graph of gaxb œ x#Î$ compressed horizontally by a factor of 2.
75.
76.
77. *x# #&y# œ ##& Ê
x#
y# $#
œ"
78. "'x# (y# œ ""# Ê
x# # È Š (‹
y# %#
œ"
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.2 Combining Functions; Shifting and Scaling Graphs 79. $x# ay #b# œ $ Ê
x# "#
a y #b # #
ŠÈ$‹
80. ax "b# #y# œ % Ê
œ"
Ê
83.
x# "'
#
ŠÈ#‹
y# *
y a#b‘# #
ŠÈ$‹
# # 82. 'ˆx $# ‰ *ˆy "# ‰ œ &%
81. $ax "b# #ay #b# œ ' ax " b #
x a"b‘# ##
#
œ"
Ê
’xˆ $# ‰“ $#
ˆy "# ‰# #
ŠÈ'‹
œ"
œ " has its center at a!ß !b. Shiftinig 4 units
left and 3 units up gives the center at ah, kb œ a%ß $b. # x a4b‘# ay 3#3b œ " 4# a y $b # œ ". Center, C, is a%ß 3#
So the equation is Ê
ax % b # 4#
$b, and
major axis, AB, is the segment from a)ß $b to a!ß $b.
84. The ellipse
x# %
y# #&
œ " has center ah, kb œ a!ß !b.
Shifting the ellipse 3 units right and 2 units down produces an ellipse with center at ah, kb œ a$ß #b and an equation
ax 3 b# %
y a#b‘# #&
œ ". Center,
C, is a3ß #b, and AB, the segment from a$ß $b to a$ß (b is the major axis.
85. (a) (fg)(x) œ f(x)g(x) œ f(x)(g(x)) œ (fg)(x), odd (b) Š gf ‹ (x) œ
f(x) g(x)
œ
f(x) g(x)
œ Š gf ‹ (x), odd
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
y# # È Š #‹
œ"
17
18
Chapter 1 Functions (c) ˆ gf ‰ (x) œ (d) (e) (f) (g) (h) (i)
g(x) f(x)
œ
g(x) f(x)
œ ˆ gf ‰ (x), odd
f # (x) œ f(x)f(x) œ f(x)f(x) œ f # (x), even g# (x) œ (g(x))# œ (g(x))# œ g# (x), even (f ‰ g)(x) œ f(g(x)) œ f(g(x)) œ f(g(x)) œ (f ‰ g)(x), even (g ‰ f)(x) œ g(f(x)) œ g(f(x)) œ (g ‰ f)(x), even (f ‰ f)(x) œ f(f(x)) œ f(f(x)) œ (f ‰ f)(x), even (g ‰ g)(x) œ g(g(x)) œ g(g(x)) œ g(g(x)) œ (g ‰ g)(x), odd
86. Yes, f(x) œ 0 is both even and odd since f(x) œ 0 œ f(x) and f(x) œ 0 œ f(x). 87. (a)
(b)
(c)
(d)
88.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.3 Trigonometric Functions 1.3 TRIGONOMETRIC FUNCTIONS 1. (a) s œ r) œ (10) ˆ 451 ‰ œ 81 m radians and
51 4
1 ‰ 3. ) œ 80° Ê ) œ 80° ˆ 180° œ
41 9
2. ) œ
s r
œ
101 8
œ
51 4
1 ‰ (b) s œ r) œ (10)(110°) ˆ 180° œ
1
)
231
0
1 #
s r
œ
30 50
31 4 " È2 È" 2
sin )
0
cos )
1
tan )
0
È3
0
und.
"
und.
" È3
und.
0
1
und.
È 2
1
#
und.
È23
sec ) csc )
0
"
"
0
" und.
7. cos x œ 45 , tan x œ 34 9. sin x œ
È8 3
, tan x œ È8
"
6.
È2
3#1
)
1'
sin )
"
cos )
!
" #
tan )
und.
È 3
cot )
!
È"3
sec )
und.
#
csc )
"
È23
8. sin x œ
2 È5
10. sin x œ
12 13
13.
14.
period œ 1
13
È #3
12. cos x œ
, cos x œ
" È2
&1 ' " # È #3
È"3
"
È"3
È 3
"
È 3
2 È3
È2
È23
#
È2
#
"# È3 #
" È5
, tan x œ 12 5 È3 #
, tan x œ
" È3
period œ 41 16.
period œ 2
m
‰ ¸ 34° œ 0.6 rad or 0.6 ˆ 180° 1
11. sin x œ È"5 , cos x œ È25
15.
551 9
Ê s œ (6) ˆ 491 ‰ œ 8.4 in. (since the diameter œ 12 in. Ê radius œ 6 in.)
È #3 "#
cot )
œ
ˆ 180° ‰ œ 225° 1
4. d œ 1 meter Ê r œ 50 cm Ê ) œ 5.
1101 18
period œ 4
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
1 % " È2
19
20
Chapter 1 Functions
17.
18.
period œ 6
period œ 1
19.
20.
period œ 21
period œ 21
21.
22.
period œ 21
period œ 21
23. period œ 1# , symmetric about the origin
24. period œ 1, symmetric about the origin
25. period œ 4, symmetric about the s-axis
26. period œ 41, symmetric about the origin
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.3 Trigonometric Functions 27. (a) Cos x and sec x are positive for x in the interval ˆ 12 , 12 ‰; and cos x and sec x are negative for x in the intervals ˆ 321 , 12 ‰ and ˆ 12 , 321 ‰. Sec x is undefined when cos x is 0. The range of sec x is (_ß 1] ["ß _); the range of cos x is ["ß 1]. (b) Sin x and csc x are positive for x in the intervals ˆ 321 , 1‰ and a!, 1b; and sin x and csc x are negative for x in the intervals a1, !b and ˆ1, 321 ‰. Csc x is undefined when sin x is 0. The range of csc x is (_ß 1] [1ß _); the range of sin x is ["ß "].
28. Since cot x œ
" tan x
, cot x is undefined when tan x œ 0
and is zero when tan x is undefined. As tan x approaches zero through positive values, cot x approaches infinity. Also, cot x approaches negative infinity as tan x approaches zero through negative values.
29. D: _ x _; R: y œ 1, 0, 1
30. D: _ x _; R: y œ 1, 0, 1
31. cos ˆx 1# ‰ œ cos x cos ˆ 1# ‰ sin x sin ˆ 1# ‰ œ (cos x)(0) (sin x)(1) œ sin x 32. cos ˆx 1# ‰ œ cos x cos ˆ 1# ‰ sin x sin ˆ 1# ‰ œ (cos x)(0) (sin x)(1) œ sin x 33. sin ˆx 1# ‰ œ sin x cos ˆ 1# ‰ cos x sin ˆ 1# ‰ œ (sin x)(0) (cos x)(1) œ cos x 34. sin ˆx 1# ‰ œ sin x cos ˆ 1# ‰ cos x sin ˆ 1# ‰ œ (sin x)(0) (cos x)(1) œ cos x 35. cos (A B) œ cos (A (B)) œ cos A cos (B) sin A sin (B) œ cos A cos B sin A (sin B) œ cos A cos B sin A sin B 36. sin (A B) œ sin (A (B)) œ sin A cos (B) cos A sin (B) œ sin A cos B cos A (sin B) œ sin A cos B cos A sin B 37. If B œ A, A B œ 0 Ê cos (A B) œ cos 0 œ 1. Also cos (A B) œ cos (A A) œ cos A cos A sin A sin A œ cos# A sin# A. Therefore, cos# A sin# A œ 1.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
21
22
Chapter 1 Functions
38. If B œ 21, then cos (A 21) œ cos A cos 21 sin A sin 21 œ (cos A)(1) (sin A)(0) œ cos A and sin (A 21) œ sin A cos 21 cos A sin 21 œ (sin A)(1) (cos A)(0) œ sin A. The result agrees with the fact that the cosine and sine functions have period 21. 39. cos (1 x) œ cos 1 cos B sin 1 sin x œ (1)(cos x) (0)(sin x) œ cos x 40. sin (21 x) œ sin 21 cos (x) cos (21) sin (x) œ (0)(cos (x)) (1)(sin (x)) œ sin x 41. sin ˆ 3#1 x‰ œ sin ˆ 3#1 ‰ cos (x) cos ˆ 3#1 ‰ sin (x) œ (1)(cos x) (0)(sin (x)) œ cos x 42. cos ˆ 3#1 x‰ œ cos ˆ 3#1 ‰ cos x sin ˆ 3#1 ‰ sin x œ (0)(cos x) (1)(sin x) œ sin x œ sin ˆ 14 13 ‰ œ sin
44. cos
111 1#
45. cos
1 12
œ cos ˆ 13 14 ‰ œ cos
46. sin
51 1#
œ sin ˆ 231 14 ‰ œ sin ˆ 231 ‰ cos ˆ 14 ‰ cos ˆ 231 ‰ sin ˆ 14 ‰ œ Š
21 ‰ 3
È2
1 8
œ
1 cos ˆ 281 ‰ #
œ
1 #
49. sin#
1 1#
œ
1 cos ˆ 211# ‰ #
œ
1 #
3 4
Ê sin ) œ „
52. sin2 ) œ cos2 ) Ê
sin2 ) cos2 )
1 4
œ cos
47. cos#
51. sin2 ) œ
cos
#
È3 #
È3 2
œ
1 3
cos
cos
21 3
1 4
sin
sin
1 4
cos ˆ 14 ‰ sin
1 3
1 3
È2 È3 # ‹Š # ‹
71 1#
œ cos ˆ 14
1 4
È2 ˆ"‰ # ‹ #
43. sin
œŠ
sin 1 3
21 3
œŠ
Š
È2 ˆ "‰ # ‹ #
sin ˆ 14 ‰ œ ˆ "# ‰ Š
Š
È2 # ‹
œ
È2 È3 # ‹Š # ‹
Š
È3 È2 # ‹Š # ‹
2 È2 4
48. cos#
51 1#
œ
1‰ 1 cos ˆ 10 1# #
œ
2 È3 4
50. sin#
31 8
œ
1 cos ˆ 681 ‰ #
Ê tan2 ) œ 1 Ê tan ) œ „ 1 Ê ) œ 14 ,
31 51 71 4 , 4 , 4
cos2 ) cos2 )
œ
È3 È2 # ‹ Š # ‹
œ
Ê ) œ 13 ,
È 6 È 2 4 È 2 È 6 4 1 È 3 2È 2
œ
ˆ "# ‰ Š œ
œ
1 Š
È3 ‹ #
#
1 Š #
È2 ‹ #
È2 # ‹
œ
œ
œ
1 È 3 2È 2
2 È3 4
2 È2 4
21 41 51 3 , 3 , 3
53. sin 2) cos ) œ 0 Ê 2sin ) cos ) cos ) œ 0 Ê cos )a2sin ) 1b œ 0 Ê cos ) œ 0 or 2sin ) 1 œ 0 Ê cos ) œ 0 or sin ) œ "# Ê ) œ 12 , 321 , or ) œ 16 , 561 Ê ) œ 16 , 12 , 561 , 321 54. cos 2) cos ) œ 0 Ê 2cos2 ) 1 cos ) œ 0 Ê 2cos2 ) cos ) 1 œ 0 Ê acos ) 1ba2cos ) 1b œ 0 Ê cos ) 1 œ 0 or 2cos ) 1 œ 0 Ê cos ) œ 1 or cos ) œ "# Ê ) œ 1 or ) œ 13 , 531 Ê ) œ 13 , 1, 531 55. tan (A B) œ
sin (AB) cos (AB)
œ
sin A cos Bcos A cos B cos A cos Bsin A sin B
œ
sin A cos B cos A sin B cos A cos B cos A cos B sin A sin B cos A cos B cos A cos B cos A cos B
œ
tan Atan B 1tan A tan B
56. tan (A B) œ
sin (AB) cos (AB)
œ
sin A cos Bcos A cos B cos A cos Bsin A sin B
œ
sin A cos B cos A sin B cos A cos B cos A cos B sin A sin B cos A cos B cos A cos B cos A cos B
œ
tan Atan B 1tan A tan B
57. According to the figure in the text, we have the following: By the law of cosines, c# œ a# b# 2ab cos ) œ 1# 1# 2 cos (A B) œ 2 2 cos (A B). By distance formula, c# œ (cos A cos B)# (sin A sin B)# œ cos# A 2 cos A cos B cos# B sin# A 2 sin A sin B sin# B œ 2 2(cos A cos B sin A sin B). Thus c# œ 2 2 cos (A B) œ 2 2(cos A cos B sin A sin B) Ê cos (A B) œ cos A cos B sin A sin B.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.3 Trigonometric Functions 58. (a) cosaA Bb œ cos A cos B sin A sin B sin ) œ cosˆ 1# )‰ and cos ) œ sinˆ 1# )‰ Let ) œ A B
sinaA Bb œ cos’ 1# aA Bb“ œ cos’ˆ 1# A‰ B“ œ cos ˆ 1# A‰ cos B sin ˆ 1# A‰ sin B œ sin A cos B cos A sin B (b) cosaA Bb œ cos A cos B sin A sin B cosaA aBbb œ cos A cos aBb sin A sin aBb Ê cosaA Bb œ cos A cos aBb sin A sin aBb œ cos A cos B sin A asin Bb œ cos A cos B sin A sin B Because the cosine function is even and the sine functions is odd. 59. c# œ a# b# 2ab cos C œ 2# 3# 2(2)(3) cos (60°) œ 4 9 12 cos (60°) œ 13 12 ˆ "# ‰ œ 7. Thus, c œ È7 ¸ 2.65. 60. c# œ a# b# 2ab cos C œ 2# 3# 2(2)(3) cos (40°) œ 13 12 cos (40°). Thus, c œ È13 12 cos 40° ¸ 1.951. 61. From the figures in the text, we see that sin B œ hc . If C is an acute angle, then sin C œ hb . On the other hand, if C is obtuse (as in the figure on the right), then sin C œ sin (1 C) œ hb . Thus, in either case, h œ b sin C œ c sin B Ê ah œ ab sin C œ ac sin B. a # b # c # 2ab
By the law of cosines, cos C œ
and cos B œ
a # c # b # . 2ac
Moreover, since the sum of the
interior angles of a triangle is 1, we have sin A œ sin (1 (B C)) œ sin (B C) œ sin B cos C cos B sin C #
#
#
#
#
#
b c c b ˆ h ‰ h ‰ œ ˆ hc ‰ ’ a 2ab a2a# b# c# c# b# b œ “ ’ a 2ac “ b œ ˆ 2abc
ah bc
Ê ah œ bc sin A.
Combining our results we have ah œ ab sin C, ah œ ac sin B, and ah œ bc sin A. Dividing by abc gives h sin A sin C sin B bc œ ðóóóóóóóñóóóóóóóò a œ c œ b . law of sines 62. By the law of sines,
sin A #
œ
sin B 3
œ
È3/2 c .
By Exercise 61 we know that c œ È7. Thus sin B œ
3È 3 2È 7
¶ 0.982.
63. From the figure at the right and the law of cosines, b# œ a# 2# 2(2a) cos B œ a# 4 4a ˆ "# ‰ œ a# 2a 4. Applying the law of sines to the figure, Ê
È2/2 a
œ
È3/2 b
sin A a
œ
sin B b
Ê b œ É 3# a. Thus, combining results,
a# 2a 4 œ b# œ
3 #
a# Ê 0 œ
" #
a# 2a 4
Ê 0 œ a# 4a 8. From the quadratic formula and the fact that a 0, we have aœ
4È4# 4(1)(8) #
œ
4 È 3 4 #
¶ 1.464.
64. (a) The graphs of y œ sin x and y œ x nearly coincide when x is near the origin (when the calculator is in radians mode). (b) In degree mode, when x is near zero degrees the sine of x is much closer to zero than x itself. The curves look like intersecting straight lines near the origin when the calculator is in degree mode.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
23
24
Chapter 1 Functions
65. A œ 2, B œ 21, C œ 1, D œ 1
66. A œ "# , B œ 2, C œ 1, D œ
" #
67. A œ 12 , B œ 4, C œ 0, D œ
68. A œ
L 21 ,
" 1
B œ L, C œ 0, D œ 0
69-72. Example CAS commands: Maple f := x -> A*sin((2*Pi/B)*(x-C))+D1; A:=3; C:=0; D1:=0; f_list := [seq( f(x), B=[1,3,2*Pi,5*Pi] )]; plot( f_list, x=-4*Pi..4*Pi, scaling=constrained, color=[red,blue,green,cyan], linestyle=[1,3,4,7], legend=["B=1","B=3","B=2*Pi","B=3*Pi"], title="#69 (Section 1.3)" ); Mathematica Clear[a, b, c, d, f, x] f[x_]:=a Sin[21/b (x c)] + d Plot[f[x]/.{a Ä 3, b Ä 1, c Ä 0, d Ä 0}, {x, 41, 41 }]
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.3 Trigonometric Functions 69. (a) The graph stretches horizontally.
(b) The period remains the same: period œ l B l. The graph has a horizontal shift of
" #
period.
70. (a) The graph is shifted right C units.
(b) The graph is shifted left C units. (c) A shift of „ one period will produce no apparent shift. l C l œ ' 71. (a) The graph shifts upwards l D lunits for D ! (b) The graph shifts down l D lunits for D !Þ
72. (a) The graph stretches l A l units.
(b) For A !, the graph is inverted.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
25
26
Chapter 1 Functions
1.4 GRAPHING WITH CALCULATORS AND COMPUTERS 1-4.
The most appropriate viewing window displays the maxima, minima, intercepts, and end behavior of the graphs and has little unused space.
1. d.
2. c.
3. d.
4. b.
5-30.
For any display there are many appropriate display widows. The graphs given as answers in Exercises 530 are not unique in appearance.
5. Ò2ß 5Ó by Ò15ß 40Ó
6. Ò4ß 4Ó by Ò4ß 4Ó
7. Ò2ß 6Ó by Ò250ß 50Ó
8. Ò1ß 5Ó by Ò5ß 30Ó
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.4 Graphing with Calculators and Computers 9. Ò4ß 4Ó by Ò5ß 5Ó
10. Ò2ß 2Ó by Ò2ß 8Ó
11. Ò2ß 6Ó by Ò5ß 4Ó
12. Ò4ß 4Ó by Ò8ß 8Ó
13. Ò1ß 6Ó by Ò1ß 4Ó
14. Ò1ß 6Ó by Ò1ß 5Ó
15. Ò3ß 3Ó by Ò0ß 10Ó
16. Ò1ß 2Ó by Ò0ß 1Ó
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
27
28
Chapter 1 Functions
17. Ò5ß 1Ó by Ò5ß 5Ó
18. Ò5ß 1Ó by Ò2ß 4Ó
19. Ò4ß 4Ó by Ò0ß 3Ó
20. Ò5ß 5Ó by Ò2ß 2Ó
21. Ò"!ß "!Ó by Ò'ß 'Ó
22. Ò&ß &Ó by Ò#ß #Ó
23. Ò'ß "!Ó by Ò'ß 'Ó
24. Ò$ß &Ó by Ò#ß "!Ó
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 1.4 Graphing with Calculators and Computers 25. Ò0Þ03ß 0Þ03Ó by Ò1Þ25ß 1Þ25Ó
26. Ò0Þ1ß 0Þ1Ó by Ò3ß 3Ó
27. Ò300ß 300Ó by Ò1Þ25ß 1Þ25Ó
28. Ò50ß 50Ó by Ò0Þ1ß 0Þ1Ó
29. Ò0Þ25ß 0Þ25Ó by Ò0Þ3ß 0Þ3Ó
30. Ò0Þ15ß 0Þ15Ó by Ò0Þ02ß 0Þ05Ó
31. x# #x œ % %y y# Ê y œ # „ Èx# #x ). The lower half is produced by graphing y œ # Èx# #x ).
32. y# "'x# œ " Ê y œ „ È" "'x# . The upper branch is produced by graphing y œ È" "'x# .
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
29
30
Chapter 1 Functions
33.
34.
35.
36.
37.
38Þ
39.
40.
CHAPTER 1 PRACTICE EXERCISES 1. The area is A œ 1 r# and the circumference is C œ #1 r. Thus, r œ 2. The surface area is S œ %1 r# Ê r œ ˆ %S1 ‰ surface area gives S œ %1 r# œ %1 ˆ $%V1 ‰
"Î#
#Î$
C #1
#
Ê A œ 1ˆ #C1 ‰ œ
C# %1 .
$ $V . The volume is V œ %$ 1 r$ Ê r œ É %1 . Substitution into the formula for
.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Practice Exercises 3. The coordinates of a point on the parabola are axß x# b. The angle of inclination ) joining this point to the origin satisfies the equation tan ) œ 4. tan ) œ
rise run
œ
h &!!
x# x
œ x. Thus the point has coordinates axß x# b œ atan )ß tan# )b.
Ê h œ &!! tan ) ft.
5.
6.
Symmetric about the origin.
Symmetric about the y-axis.
7.
8.
Neither
Symmetric about the y-axis.
9. yaxb œ axb# " œ x# " œ yaxb. Even. 10. yaxb œ axb& axb$ axb œ x& x$ x œ yaxb. Odd. 11. yaxb œ " cosaxb œ " cos x œ yaxb. Even. 12. yaxb œ secaxb tanaxb œ 13. yaxb œ
axb% " axb$ #axb
œ
x% " x$ #x
sinaxb cos# axb
œ
sin x cos# x
œ sec x tan x œ yaxb. Odd.
%
" œ xx$ # x œ yaxb. Odd.
14. yaxb œ axb sinaxb œ axb sin x œ ax sin xb œ yaxb. Odd. 15. yaxb œ x cosaxb œ x cos x. Neither even nor odd. 16. yaxb œ axbcosaxb œ x cos x œ yaxb. Odd. 17. Since f and g are odd Ê faxb œ faxb and gaxb œ gaxb. (a) af † gbaxb œ faxbgaxb œ ÒfaxbÓÒgaxbÓ œ faxbgaxb œ af † gbaxb Ê f † g is even (b) f 3 axb œ faxbfaxbfaxb œ ÒfaxbÓÒfaxbÓÒfaxbÓ œ faxb † faxb † faxb œ f 3 axb Ê f 3 is odd. (c) fasinaxbb œ fasinaxbb œ fasinaxbb Ê fasinaxbb is odd. (d) gasecaxbb œ gasecaxbb Ê gasecaxbb is even. (e) lgaxbl œ lgaxbl œ lgaxbl Ê lgl is evenÞ
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
31
32
Chapter 1 Functions
18. Let faa xb œ faa xb and define gaxb œ fax ab. Then gaxb œ faaxb ab œ faa xb œ faa xb œ fax ab œ gaxb Ê gaxb œ fax ab is even. 19. (a) The function is defined for all values of x, so the domain is a_ß _b. (b) Since l x l attains all nonnegative values, the range is Ò#ß _Ñ. 20. (a) Since the square root requires " x !, the domain is Ð_ß "Ó. (b) Since È" x attains all nonnegative values, the range is Ò#ß _Ñ. 21. (a) Since the square root requires "' x# !, the domain is Ò%ß %Ó. (b) For values of x in the domain, ! Ÿ "' x# Ÿ "', so ! Ÿ È"' x# Ÿ %. The range is Ò!ß %Ó. 22. (a) The function is defined for all values of x, so the domain is a_ß _b. (b) Since $#x attains all positive values, the range is a"ß _b. 23. (a) The function is defined for all values of x, so the domain is a_ß _b. (b) Since #ex attains all positive values, the range is a$ß _b. 24. (a) The function is equivalent to y œ tan #x, so we require #x Á
k1 #
for odd integers k. The domain is given by x Á
k1 %
for
odd integers k. (b) Since the tangent function attains all values, the range is a_ß _b. 25. (a) The function is defined for all values of x, so the domain is a_ß _b. (b) The sine function attains values from " to ", so # Ÿ #sina$x 1b Ÿ # and hence $ Ÿ #sina$x 1b " Ÿ ". The range is Ò3ß 1Ó. 26. (a) The function is defined for all values of x, so the domain is a_ß _b. & (b) The function is equivalent to y œ È x# , which attains all nonnegative values. The range is Ò!ß _Ñ. 27. (a) The logarithm requires x $ !, so the domain is a$ß _b. (b) The logarithm attains all real values, so the range is a_ß _b. 28. (a) The function is defined for all values of x, so the domain is a_ß _b. (b) The cube root attains all real values, so the range is a_ß _b. 29. (a) (b) (c) (d)
Increasing because volume increases as radius increases Neither, since the greatest integer function is composed of horizontal (constant) line segments Decreasing because as the height increases, the atmospheric pressure decreases. Increasing because the kinetic (motion) energy increases as the particles velocity increases.
30. (a) Increasing on Ò2, _Ñ (c) Increasing on a_, _b
(b) Increasing on Ò1, _Ñ (d) Increasing on Ò "# , _Ñ
31. (a) The function is defined for % Ÿ x Ÿ %, so the domain is Ò%ß %Ó. (b) The function is equivalent to y œ Èl x l, % Ÿ x Ÿ %, which attains values from ! to # for x in the domain. The range is Ò!ß #Ó.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Practice Exercises
33
32. (a) The function is defined for # Ÿ x Ÿ #, so the domain is Ò#ß #Ó. (b) The range is Ò"ß "Ó. 33. First piece: Line through a!ß "b and a"ß !b. m œ Second piece: Line through a"ß "b and a#ß !b. m faxb œ œ
" x, ! Ÿ x " # x, " Ÿ x Ÿ #
34. First piece: Line through a!ß !b and a2ß 5b. m œ Second piece: Line through a2ß 5b and a4ß !b. m faxb œ
10
5 2 x, 5x 2 ,
!" " "! œ " œ " " œ !# " œ "
" Ê y œ x " œ " x œ " Ê y œ ax "b " œ x # œ # x
5! 5 5 2! œ 2 Ê y œ 2x !5 5 œ 4 2 œ 2 œ 52 Ê
y œ 52 ax 2b 5 œ 52 x 10 œ 10
!Ÿx2 (Note: x œ 2 can be included on either piece.) 2ŸxŸ4
35. (a) af‰gba"b œ faga"bb œ fŠ È"" # ‹ œ fa"b œ (b) ag‰f ba#b œ gafa#bb œ gˆ "2 ‰ œ (c) af‰f baxb œ fafaxbb œ fˆ "x ‰ œ
" É "# #
" "Îx
œ
" È#Þ&
" "
œ"
or É
œ x, x Á !
(d) ag‰gbaxb œ gagaxbb œ gŠ Èx" # ‹ œ
"
" É Èx # #
œ
% x# È É " #È x #
$ 36. (a) af‰gba"b œ faga"bb œ fˆÈ " "‰ œ fa!b œ # ! œ # $ (b) ag‰f ba#b œ faga#bb œ ga# #b œ ga!b œ È !"œ"
(c) af‰f baxb œ fafaxbb œ fa# xb œ # a# xb œ x $ $ $ È (d) ag‰gbaxb œ gagaxbb œ gˆÈ x "‰ œ É x""
#
37. (a) af‰gbaxb œ fagaxbb œ fˆÈx #‰ œ # ˆÈx #‰ œ x, x #. ag‰f baxb œ fagaxbb œ ga# x# b œ Èa# x# b # œ È% x# (b) Domain of f‰g: Ò#ß _ÑÞ Domain of g‰f: Ò#ß #ÓÞ
(c) Range of f‰g: Ð_ß #ÓÞ Range of g‰f: Ò!ß #ÓÞ
% 38. (a) af‰gbaxb œ fagaxbb œ fŠÈ" x‹ œ ÉÈ" x œ È " x.
ag‰f baxb œ fagaxbb œ gˆÈx‰ œ É" Èx (b) Domain of f‰g: Ð_ß "ÓÞ Domain of g‰f: Ò!ß "ÓÞ 39.
y œ faxb
(c) Range of f‰g: Ò!ß _ÑÞ Range of g‰f: Ò!ß "ÓÞ y œ af‰f baxb
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
5x 2
34
Chapter 1 Functions
40.
41.
42.
The graph of f# (x) œ f" akxkb is the same as the graph of f" (x) to the right of the y-axis. The graph of f# (x) to the left of the y-axis is the reflection of y œ f" (x), x 0 across the y-axis. 43.
It does not change the graph.
44.
Whenever g" (x) is positive, the graph of y œ g# (x) œ kg" (x)k is the same as the graph of y œ g" (x). When g" (x) is negative, the graph of y œ g# (x) is the reflection of the graph of y œ g" (x) across the x-axis.
Whenever g" (x) is positive, the graph of y œ g# (x) œ kg" (x)k is the same as the graph of y œ g" (x). When g" (x) is negative, the graph of y œ g# (x) is the reflection of the graph of y œ g" (x) across the x-axis.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Practice Exercises 45.
46.
The graph of f# (x) œ f" akxkb is the same as the graph of f" (x) to the right of the y-axis. The graph of f# (x) to the left of the y-axis is the reflection of y œ f" (x), x 0 across the y-axis.
Whenever g" (x) is positive, the graph of y œ g# (x) œ kg" (x)k is the same as the graph of y œ g" (x). When g" (x) is negative, the graph of y œ g# (x) is the reflection of the graph of y œ g" (x) across the x-axis. 47.
48.
The graph of f# (x) œ f" akxkb is the same as the graph of f" (x) to the right of the y-axis. The graph of f# (x) to the left of the y-axis is the reflection of y œ f" (x), x 0 across the y-axis. 49. (a) y œ gax 3b (c) y œ gaxb (e) y œ 5 † gaxb
" #
The graph of f# (x) œ f" akxkb is the same as the graph of f" (x) to the right of the y-axis. The graph of f# (x) to the left of the y-axis is the reflection of y œ f" (x), x 0 across the y-axis. (b) y œ gˆx 3# ‰ 2 (d) y œ gaxb (f) y œ ga5xb
50. (a) Shift the graph of f right 5 units (b) Horizontally compress the graph of f by a factor of 4 (c) Horizontally compress the graph of f by a factor of 3 and a then reflect the graph about the y-axis (d) Horizontally compress the graph of f by a factor of 2 and then shift the graph left "# unit. (e) Horizontally stretch the graph of f by a factor of 3 and then shift the graph down 4 units. (f) Vertically stretch the graph of f by a factor of 3, then reflect the graph about the x-axis, and finally shift the graph up "4 unit. 51. Reflection of the grpah of y œ Èx about the x-axis followed by a horizontal compression by a factor of 1 2 then a shift left 2 units.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
35
36
Chapter 1 Functions
52. Reflect the graph of y œ x about the x-axis, followed by a vertical compression of the graph by a factor of 3, then shift the graph up 1 unit.
53. Vertical compression of the graph of y œ
1 x2
by a
factor of 2, then shift the graph up 1 unit.
54. Reflect the graph of y œ x1Î3 about the y-axis, then compress the graph horizontally by a factor of 5.
55.
56.
period œ 1 57.
period œ 41 58.
period œ 2
period œ 4
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Practice Exercises 59.
60.
period œ 21
period œ 21 1 3
61. (a) sin B œ sin
œ
b c
œ
b #
Ê b œ 2 sin
1 3
œ 2Š
È3 # ‹
œ È3. By the theorem of Pythagoras,
a# b# œ c# Ê a œ Èc# b# œ È4 3 œ 1. 1 3
(b) sin B œ sin
œ
b c
œ
2 c
Ê cœ
2 sin 13
œ È23 œ Š ‹ #
4 È3
#
. Thus, a œ Èc# b# œ ÊŠ È43 ‹ (2)# œ É 34 œ
62. (a) sin A œ
a c
Ê a œ c sin A
(b) tan A œ
a b
Ê a œ b tan A
63. (a) tan B œ
b a
Ê aœ
(b) sin A œ
a c
Ê cœ
64. (a) sin A œ
a c
(c) sin A œ
a c
b tan B
œ
a sin A
È c # b # c
65. Let h œ height of vertical pole, and let b and c denote the distances of points B and C from the base of the pole, measured along the flatground, respectively. Then, tan 50° œ hc , tan 35° œ hb , and b c œ 10. Thus, h œ c tan 50° and h œ b tan 35° œ (c 10) tan 35° Ê c tan 50° œ (c 10) tan 35° Ê c (tan 50° tan 35°) œ 10 tan 35° tan 35° Ê c œ tan10 50°tan 35° Ê h œ c tan 50° œ
10 tan 35° tan 50° tan 50°tan 35°
¸ 16.98 m.
66. Let h œ height of balloon above ground. From the figure at the right, tan 40° œ ha , tan 70° œ hb , and a b œ 2. Thus, h œ b tan 70° Ê h œ (2 a) tan 70° and h œ a tan 40° Ê (2 a) tan 70° œ a tan 40° Ê a(tan 40° tan 70°) 70° œ 2 tan 70° Ê a œ tan 240°tantan 70° Ê h œ a tan 40° œ
2 tan 70° tan 40° tan 40°tan 70°
¸ 1.3 km.
67. (a)
(b) The period appears to be 41.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
2 È3
.
37
38
Chapter 1 Functions (c) f(x 41) œ sin (x 41) cos ˆ x#41 ‰ œ sin (x 21) cos ˆ x# 21‰ œ sin x cos since the period of sine and cosine is 21. Thus, f(x) has period 41.
x #
68. (a)
(b) D œ (_ß 0) (!ß _); R œ [1ß 1] (c) f is not periodic. For suppose f has period p. Then f ˆ #"1 kp‰ œ f ˆ #"1 ‰ œ sin 21 œ 0 for all integers k. Choose k so large that
" #1
kp
" 1
Ê 0
" (1/21)kp
1. But then
f ˆ #"1 kp‰ œ sin Š (1/#1")kp ‹ 0 which is a contradiction. Thus f has no period, as claimed. CHAPTER 1 ADDITIONAL AND ADVANCED EXERCISES 1. There are (infinitely) many such function pairs. For example, f(x) œ 3x and g(x) œ 4x satisfy f(g(x)) œ f(4x) œ 3(4x) œ 12x œ 4(3x) œ g(3x) œ g(f(x)). 2. Yes, there are many such function pairs. For example, if g(x) œ (2x 3)$ and f(x) œ x"Î$ , then (f ‰ g)(x) œ f(g(x)) œ f a(2x 3)$ b œ a(2x 3)$ b
"Î$
œ 2x 3.
3. If f is odd and defined at x, then f(x) œ f(x). Thus g(x) œ f(x) 2 œ f(x) 2 whereas g(x) œ (f(x) 2) œ f(x) 2. Then g cannot be odd because g(x) œ g(x) Ê f(x) 2 œ f(x) 2 Ê 4 œ 0, which is a contradiction. Also, g(x) is not even unless f(x) œ 0 for all x. On the other hand, if f is even, then g(x) œ f(x) 2 is also even: g(x) œ f(x) 2 œ f(x) 2 œ g(x). 4. If g is odd and g(0) is defined, then g(0) œ g(0) œ g(0). Therefore, 2g(0) œ 0 Ê g(0) œ 0. 5. For (xß y) in the 1st quadrant, kxk kyk œ 1 x Í x y œ 1 x Í y œ 1. For (xß y) in the 2nd quadrant, kxk kyk œ x 1 Í x y œ x 1 Í y œ 2x 1. In the 3rd quadrant, kxk kyk œ x 1 Í x y œ x 1 Í y œ 2x 1. In the 4th quadrant, kxk kyk œ x 1 Í x (y) œ x 1 Í y œ 1. The graph is given at the right.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Additional and Advanced Exercises 6. We use reasoning similar to Exercise 5. (1) 1st quadrant: y kyk œ x kxk Í 2y œ 2x Í y œ x. (2) 2nd quadrant: y kyk œ x kxk Í 2y œ x (x) œ 0 Í y œ 0. (3) 3rd quadrant: y kyk œ x kxk Í y (y) œ x (x) Í 0 œ 0 Ê all points in the 3rd quadrant satisfy the equation. (4) 4th quadrant: y kyk œ x kxk Í y (y) œ 2x Í 0 œ x. Combining these results we have the graph given at the right: 7. (a) sin# x cos# x œ 1 Ê sin# x œ 1 cos# x œ (1 cos x)(1 cos x) Ê (1 cos x) œ Ê
1cos x sin x
œ
sin# x 1cos x
sin x 1cos x
(b) Using the definition of the tangent function and the double angle formulas, we have #
tan ˆ x# ‰ œ
sin# ˆ x# ‰ cos# ˆ #x ‰
œ
"
x ‹‹ cos Š2 Š #
#
"cos Š2 Š #x ‹‹ #
œ
1cos x 1cos x
.
8. The angles labeled # in the accompanying figure are equal since both angles subtend arc CD. Similarly, the two angles labeled ! are equal since they both subtend arc AB. Thus, triangles AED and BEC are similar which ) b implies ab c œ 2a cos a c Ê (a c)(a c) œ b(2a cos ) b) Ê a# c# œ 2ab cos ) b# Ê c# œ a# b# 2ab cos ).
9. As in the proof of the law of sines of Section 1.3, Exercise 61, ah œ bc sin A œ ab sin C œ ac sin B Ê the area of ABC œ "# (base)(height) œ "# ah œ "# bc sin A œ "# ab sin C œ "# ac sin B. 10. As in Section 1.3, Exercise 61, (Area of ABC)# œ œ
" 4
(base)# (height)# œ
" 4
a# h # œ
" 4
a# b# sin# C
a# b# a" cos# Cb . By the law of cosines, c# œ a# b# 2ab cos C Ê cos C œ
Thus, (area of ABC)# œ œ
" 4
" 16
" 4
a# b# a" cos# Cb œ #
Š4a# b# aa# b# c# b ‹ œ
" 16
" 4
a# b# Œ" Š a
#
b# c# ‹ #ab
#
œ
a# b# 4
a# b# c# 2ab
Š"
.
aa # b # c # b 4a# b#
#
‹
ca2ab aa# b# c# bb a2ab aa# b# c# bbd
" ca(a b)# c# b ac# (a b)# bd œ 16 c((a b) c)((a b) c)(c (a b))(c (a b))d a b c a b c a b c a b c œ ˆ # ‰ ˆ # ‰ ˆ # ‰ ˆ # ‰‘ œ s(s a)(s b)(s c), where s œ a#bc .
œ
" 16
Therefore, the area of ABC equals Ès(s a)(s b)(s c) . 11. If f is even and odd, then f(x) œ f(x) and f(x) œ f(x) Ê f(x) œ f(x) for all x in the domain of f. Thus 2f(x) œ 0 Ê f(x) œ 0.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
39
40
Chapter 1 Functions f(x) f((x)) œ f(x) #f(x) œ E(x) Ê E # even function. Define O(x) œ f(x) E(x) œ f(x) f(x) #f(x) œ f(x) #f(x) . Then O(x) œ f(x) #f((x)) œ f(x)# f(x) œ Š f(x) #f(x) ‹ œ O(x) Ê O is an odd function
12. (a) As suggested, let E(x) œ
f(x) f(x) #
Ê E(x) œ
is an
Ê f(x) œ E(x) O(x) is the sum of an even and an odd function. (b) Part (a) shows that f(x) œ E(x) O(x) is the sum of an even and an odd function. If also f(x) œ E" (x) O" (x), where E" is even and O" is odd, then f(x) f(x) œ 0 œ aE" (x) O" (x)b (E(x) O(x)). Thus, E(x) E" (x) œ O" (x) O(x) for all x in the domain of f (which is the same as the domain of E E" and O O" ). Now (E E" )(x) œ E(x) E" (x) œ E(x) E" (x) (since E and E" are even) œ (E E" )(x) Ê E E" is even. Likewise, (O" O)(x) œ O" (x) O(x) œ O" (x) (O(x)) (since O and O" are odd) œ (O" (x) O(x)) œ (O" O)(x) Ê O" O is odd. Therefore, E E" and O" O are both even and odd so they must be zero at each x in the domain of f by Exercise 11. That is, E" œ E and O" œ O, so the decomposition of f found in part (a) is unique. 13. y œ ax# bx c œ a Šx# ba x
b# 4a# ‹
b# 4a
c œ a ˆx
b ‰# 2a
b# 4a
c
(a) If a 0 the graph is a parabola that opens upward. Increasing a causes a vertical stretching and a shift of the vertex toward the y-axis and upward. If a 0 the graph is a parabola that opens downward. Decreasing a causes a vertical stretching and a shift of the vertex toward the y-axis and downward. (b) If a 0 the graph is a parabola that opens upward. If also b 0, then increasing b causes a shift of the graph downward to the left; if b 0, then decreasing b causes a shift of the graph downward and to the right. If a 0 the graph is a parabola that opens downward. If b 0, increasing b shifts the graph upward to the right. If b 0, decreasing b shifts the graph upward to the left. (c) Changing c (for fixed a and b) by ?c shifts the graph upward ?c units if ?c 0, and downward ?c units if ?c 0. 14. (a) If a 0, the graph rises to the right of the vertical line x œ b and falls to the left. If a 0, the graph falls to the right of the line x œ b and rises to the left. If a œ 0, the graph reduces to the horizontal line y œ c. As kak increases, the slope at any given point x œ x! increases in magnitude and the graph becomes steeper. As kak decreases, the slope at x! decreases in magnitude and the graph rises or falls more gradually. (b) Increasing b shifts the graph to the left; decreasing b shifts it to the right. (c) Increasing c shifts the graph upward; decreasing c shifts it downward. 15. Each of the triangles pictured has the same base b œ v?t œ v(1 sec). Moreover, the height of each triangle is the same value h. Thus "# (base)(height) œ
" #
bh
œ A" œ A# œ A$ œ á . In conclusion, the object sweeps out equal areas in each one second interval.
16. (a) Using the midpoint formula, the coordinates of P are ˆ a# 0 ß b# 0 ‰ œ ˆ #a ß b# ‰ . Thus the slope of OP œ
?y ?x
œ
b/2 a/2
œ
b a
.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 1 Additional and Advanced Exercises (b) The slope of AB œ
b 0 0 a
41
œ ba . The line segments AB and OP are perpendicular when the product #
of their slopes is " œ ˆ ba ‰ ˆ ba ‰ œ ba# . Thus, b# œ a# Ê a œ b (since both are positive). Therefore, AB is perpendicular to OP when a œ b. 17. From the figure we see that 0 Ÿ ) Ÿ cos ) œ
and AB œ AD œ 1. From trigonometry we have the following: sin ) œ sin ) cos ) .
œ CD, and tan ) œ œ We can see that: w " area ˜AEB area sector DB area ˜ADC Ê # aAEbaEBb "# aADb2 ) "# aADbaCDb AE AB
œ AE, tan ) œ
1 2
CD AD
EB AE
Ê "# sin ) cos ) "# a"b2 ) "# a"batan )b Ê "# sin ) cos ) "# )
" sin ) # cos )
18. af‰gbaxb œ fagaxbb œ aacx db b œ acx ad b and ag‰f baxb œ gafaxbb œ caax bb d œ acx cb d Thus af‰gbaxb œ ag‰f baxb Ê acx ad b œ acx bc d Ê ad b œ bc d. Note that fadb œ ad b and gabb œ cb d, thus af‰gbaxb œ ag‰f baxb if fadb œ gabb.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
EB AB
œ EB,
42
Chapter 1 Functions
NOTES:
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
CHAPTER 2 LIMITS AND CONTINUITY 2.1 RATES OF CHANGE AND TANGENTS TO CURVES 1. (a)
?f ?x
œ
f(3) f(2) 3#
2. (a)
?g ?x
œ
g(1) g(1) 1 (1)
3. (a)
?h ?t
œ
h ˆ 341 ‰ h ˆ 14 ‰ 1 31 4 4
œ
?g ?t
œ
g(1) g(0) 10
(2 1) (2 1) 10
4. (a) 5.
?R ?)
œ
R(2) R(0) 20
6.
?P ?)
œ
P(2) P(1) 21
7. (a)
?y ?x
œ
?y ?x
œ
?y ?x
œ
?y ?x
œ
?y ?x
œ
?y ?x
œ
?y ?x
œ
œ œ
28 9 1
œ
œ
œ
1 1 2
œ 19
(b)
?f ?x
œ
f(1) f(") 1 (1)
œ
20 #
œ1
œ0
(b)
?g ?x
œ
g(0)g(2) 0(2)
œ
04 #
œ 2
(b)
?h ?t
œ
h ˆ 1# ‰ h ˆ 16 ‰ 11 # 6
œ
?g ?t
œ
g(1) g(1) 1 (1)
œ
1 1 1 #
È 8 1 È 1 #
œ 14 œ 12
3" #
œ
(8 16 10)(" % &) 1
ˆa2 h b2 3 ‰ ˆ 2 2 3 ‰ h
œ
(b)
0 È3 1 3
œ
3 È 3 1
(2 1) (2 ") #1
œ0
œ1 œ22œ0
4 4h h2 3 1 h
œ
4h h2 h
œ 4 h. As h Ä 0, 4 h Ä 4 Ê at Pa2, 1b the slope is 4.
(b) y 1 œ 4ax 2b Ê y 1 œ 4x 8 Ê y œ 4x 7 8. (a)
ˆ 5 a1 h b 2 ‰ ˆ 5 1 2 ‰ h
œ
5 1 2h h2 4 h
œ
2h h2 h
œ 2 h. As h Ä 0, 2 h Ä 2 Ê at Pa1, 4b the
slope is 2. (b) y 4 œ a2bax 1b Ê y 4 œ 2x 2 Ê y œ 2x 6 9. (a)
ˆa2 h b2 2 a 2 h b 3 ‰ ˆ 2 2 2 a 2 b 3 ‰ h
œ
4 4h h2 4 2h 3 a3b h
œ
2h h2 h
œ 2 h. As h Ä 0, 2 h Ä 2 Ê at
Pa2, 3b the slope is 2. (b) y a3b œ 2ax 2b Ê y 3 œ 2x 4 Ê y œ 2x 7. 10. (a)
ˆa1 h b2 4 a 1 h b ‰ ˆ 1 2 4 a 1 b ‰ h
œ
1 2h h2 4 4h a3b h
œ
h2 2h h
œ h 2. As h Ä 0, h 2 Ä 2 Ê at
Pa1, 3b the slope is 2. (b) y a3b œ a2bax 1b Ê y 3 œ 2x 2 Ê y œ 2x 1. 11. (a)
a2 h b 3 2 3 h
œ
8 12h 4h2 h3 8 h
œ
12h 4h2 h3 h
œ 12 4h h2 . As h Ä 0, 12 4h h2 Ä 12, Ê at
Pa2, 8b the slope is 12. (b) y 8 œ 12ax 2b Ê y 8 œ 12x 24 Ê y œ 12x 16. 12. (a)
2 a1 h b3 ˆ 2 1 3 ‰ h
œ
2 1 3h 3h2 h3 1 h
œ
3h 3h2 h3 h
œ 3 3h h2 . As h Ä 0, 3 3h h2 Ä 3, Ê at
Pa1, 1b the slope is 3. (b) y 1 œ a3bax 1b Ê y 1 œ 3x 3 Ê y œ 3x 4. 13. (a)
a1 hb3 12a1 hb ˆ13 12a"b‰ h 2
œ
1 3h 3h2 h3 12 12h a11b h
œ
9h 3h2 h3 h
œ 9 3h h2 . As h Ä 0,
9 3h h Ä 9 Ê at Pa1, 11b the slope is 9. (b) y a11b œ a9bax 1b Ê y 11 œ 9x 9 Ê y œ 9x 2.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
44
Chapter 2 Limits and Continuity
14. (a)
?y ?x
œ
a2 h b 3 3 a 2 h b 2 4 ˆ 2 3 3 a 2 b 2 4 ‰ h 2
8 12h 6h2 h3 12 12h 3h2 4 0 h
œ
œ
3h2 h3 h
œ 3h h2 . As h Ä 0,
3h h Ä 0 Ê at Pa2, 0b the slope is 0. (b) y 0 œ 0ax 2b Ê y œ 0. 15. (a)
?p ?t
Slope of PQ œ
Q
650 225 20 10 650 375 20 14 650 475 20 16.5 650 550 20 18
Q" (10ß 225) Q# (14ß 375) Q$ (16.5ß 475) Q% (18ß 550)
œ 42.5 m/sec œ 45.83 m/sec œ 50.00 m/sec œ 50.00 m/sec
(b) At t œ 20, the sportscar was traveling approximately 50 m/sec or 180 km/h. 16. (a)
Slope of PQ œ
Q Q" (5ß 20) Q# (7ß 39) Q$ (8.5ß 58) Q% (9.5ß 72)
80 20 10 5 80 39 10 7 80 58 10 8.5 80 72 10 9.5
?p ?t
œ 12 m/sec œ 13.7 m/sec œ 14.7 m/sec œ 16 m/sec
(b) Approximately 16 m/sec 17. (a)
(b)
?p ?t
œ
174 62 2004 2002
œ
112 #
œ 56 thousand dollars per year
(c) The average rate of change from 2001 to 2002 is ??pt œ
62 27 20022 2001 œ 35 thousand dollars per year. 111 62 The average rate of change from 2002 to 2003 is ??pt œ 2003 2002 œ 49 thousand dollars per year. So, the rate at which profits were changing in 2002 is approximatley "# a35 49b œ 42 thousand dollars
18. (a) F(x) œ (x 2)/(x 2) x 1.2 F(x) 4.0 ?F ?x ?F ?x ?F ?x
œ
?g ?x ?g ?x
œ
œ œ
1.1 3.4
1.01 3.04
1.001 3.004
1.0001 3.0004
1 3
4.0 (3) œ 5.0; 1.2 1 3.04 (3) œ 4.04; 1.01 1 3.!!!% (3) œ 4.!!!%; 1.0001 1
?F ?x ?F ?x
œ œ
3.4 (3) œ 4.4; 1.1 1 3.004 (3) œ 4.!!%; 1.001 1
È g(2) g(1) œ #21" ¸ 0.414213 21 È1 h" g(1 h) g(1) (1 h) 1 œ h
?g ?x
œ
g(1.5) g(1) 1.5 1
(b) The rate of change of F(x) at x œ 1 is 4. 19. (a)
œ
œ
È1.5 " 0.5
¸ 0.449489
(b) g(x) œ Èx 1h È1 h ŠÈ1 h 1‹ /h
1.1 1.04880
1.01 1.004987
1.001 1.0004998
1.0001 1.0000499
1.00001 1.000005
1.000001 1.0000005
0.4880
0.4987
0.4998
0.499
0.5
0.5
(c) The rate of change of g(x) at x œ 1 is 0.5.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
per year.
Section 2.1 Rates of Change and Tangents to Curves (d) The calculator gives lim hÄ! 20. (a) i) ii) (b)
f(3) f(2) 32
œ
f(T) f(2) T#
œ
"" 3 #
1 " " T # T#
T f(T) af(T) f(2)b/aT 2b
"
œ
6
1
È1 h" h
œ "# .
œ "6
#TT T#
2 #T
œ
45
œ
2T #T(T 2)
2.1 0.476190 0.2381
œ
2T #T(2 T)
2.01 0.497512 0.2488
œ #"T , T Á 2
2.001 0.499750 0.2500
2.0001 0.4999750 0.2500
2.00001 0.499997 0.2500
2.000001 0.499999 0.2500
(c) The table indicates the rate of change is 0.25 at t œ 2. " ‰ (d) lim ˆ #T œ 4" TÄ#
NOTE: Answers will vary in Exercises 21 and 22. s 15 0 ˜s 20 15 10 ˜s 30 20 21. (a) Ò0, 1Ó: ˜ ˜t œ 1 0 œ 15 mphà Ò1, 2.5Ó: ˜t œ 2.5 1 œ 3 mphà Ò2.5, 3.5Ó: ˜t œ 3.5 2.5 œ 10 mph (b) At Pˆ "# , 7.5‰: Since the portion of the graph from t œ 0 to t œ 1 is nearly linear, the instantaneous rate of change
will be almost the same as the average rate of change, thus the instantaneous speed at t œ
" #
is
15 7.5 1 0.5
œ 15 mi/hr.
At Pa2, 20b: Since the portion of the graph from t œ 2 to t œ 2.5 is nearly linear, the instantaneous rate of change will 20 be nearly the same as the average rate of change, thus v œ 20 2.5 2 œ 0 mi/hr. For values of t less than 2, we have Slope of PQ œ
Q
?s ?t
15 20 1 2 œ 5 mi/hr 19 20 1.5 2 œ 2 mi/hr 19.9 20 1.9 2 œ 1 mi/hr
Q" (1ß 15) Q# (1.5ß 19) Q$ (1.9ß 19.9)
Thus, it appears that the instantaneous speed at t œ 2 is 0 mi/hr. At Pa3, 22b: s Q Slope of PQ œ ? ?t 35 22 43 30 22 3.5 3 23 22 3.1 3
Q" (4ß 35) Q# (3.5ß 30) Q$ (3.1ß 23)
Slope of PQ œ
Q
œ 13 mi/hr
Q" (2ß 20)
œ 16 mi/hr
Q# (2.5ß 20)
œ 10 mi/hr
Q$ (2.9ß 21.6)
20 22 2 3 œ 2 mi/hr 20 22 2.5 3 œ 4 mi/hr 21.6 22 2.9 3 œ 4 mi/hr
Thus, it appears that the instantaneous speed at t œ 3 is about 7 mi/hr. (c) It appears that the curve is increasing the fastest at t œ 3.5. Thus for Pa3.5, 30b s Q Slope of PQ œ ? Q Slope of PQ œ ?t 35 30 4 3.5 œ 10 mi/hr 34 30 3.75 3.5 œ 16 mi/hr 32 30 3.6 3.5 œ 20 mi/hr
Q" (4ß 35) Q# (3.75ß 34) Q$ (3.6ß 32)
˜A ˜t
œ
10 15 30
(b) At Pa1, 14b: Q Q" (2ß 12.2) Q# (1.5ß 13.2) Q$ (1.1ß 13.85)
¸ 1.67
gal day à
Ò0, 5Ó:
Q# (3.25ß 25) Q$ (3.4ß 28)
Slope of PQ œ
˜A ˜t
?A ?t
12.2 14 2 1 œ 1.8 gal/day 13.2 14 1.5 1 œ 1.6 gal/day 13.85 14 1.1 1 œ 1.5 gal/day
œ
3.9 15 50
¸ 2.2
gal day à Ò7,
10Ó:
?s ?t
22 30 3 3.5 œ 16 mi/hr 25 30 3.25 3.5 œ 20 mi/hr 28 30 3.4 3.5 œ 20 mi/hr
Q" (3ß 22)
Thus, it appears that the instantaneous speed at t œ 3.5 is about 20 mi/hr. 22. (a) Ò0, 3Ó:
?s ?t
˜A ˜t
Q Q" (0ß 15) Q# (0.5ß 14.6) Q$ (0.9ß 14.86)
œ
0 1.4 10 7
¸ 0.5
Slope of PQ œ
gal day ?A ?t
15 14 0 1 œ 1 gal/day 14.6 14 0.5 1 œ 1.2 gal/day 14.86 14 0.9 1 œ 1.4 gal/day
Thus, it appears that the instantaneous rate of consumption at t œ 1 is about 1.45 gal/day. At Pa4, 6b:
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
46
Chapter 2 Limits and Continuity Q Q" (5ß 3.9) Q# (4.5ß 4.8) Q$ (4.1ß 5.7)
Slope of PQ œ 3.9 6 54 4.8 6 4.5 4 5.7 6 4.1 4
?A ?t
Q
œ 2.1 gal/day
Q" (3ß 10)
œ 2.4 gal/day
Q# (3.5ß 7.8)
œ 3 gal/day
Q$ (3.9ß 6.3)
Slope of PQ œ
10 6 3 4 œ 4 gal/day 7.8 6 3.5 4 œ 3.6 gal/day 6.3 6 3.9 4 œ 3 gal/day
Thus, it appears that the instantaneous rate of consumption at t œ 1 is 3 gal/day. At Pa8, 1b: Q Slope of PQ œ ??At Q Slope of PQ œ Q" (9ß 0.5) Q# (8.5ß 0.7) Q$ (8.1ß 0.95)
0.5 1 9 8 œ 0.5 gal/day 0.7 1 8.5 8 œ 0.6 gal/day 0.95 1 8.1 8 œ 0.5 gal/day
Q" (7ß 1.4)
4.8 7.8 4.5 3.5 œ 3 gal/day 6 7.8 4 3.5 œ 3.6 gal/day 7.4 7.8 3.6 3.5 œ 4 gal/day
Q" (2.5ß 11.2)
Q# (7.5ß 1.3) Q$ (7.9ß 1.04)
?A ?t
?A ?t
1.4 1 7 8 œ 0.6 gal/day 1.3 1 7.5 8 œ 0.6 gal/day 1.04 1 7.9 8 œ 0.6 gal/day
Thus, it appears that the instantaneous rate of consumption at t œ 1 is 0.55 gal/day. (c) It appears that the curve (the consumption) is decreasing the fastest at t œ 3.5. Thus for Pa3.5, 7.8b s Q Slope of PQ œ ??At Q Slope of PQ œ ? ?t Q" (4.5ß 4.8) Q# (4ß 6) Q$ (3.6ß 7.4)
Q# (3ß 10) Q$ (3.4ß 8.2)
Thus, it appears that the rate of consumption at t œ 3.5 is about 4 gal/day.
11.2 7.8 2.5 3.5 œ 3.4 gal/day 10 7.8 3 3.5 œ 4.4 gal/day 8.2 7.8 3.4 3.5 œ 4 gal/day
2.2 LIMIT OF A FUNCTION AND LIMIT LAWS 1. (a) Does not exist. As x approaches 1 from the right, g(x) approaches 0. As x approaches 1 from the left, g(x) approaches 1. There is no single number L that all the values g(x) get arbitrarily close to as x Ä 1. (b) 1 (c) 0 (d) 0.5 2. (a) 0 (b) 1 (c) Does not exist. As t approaches 0 from the left, f(t) approaches 1. As t approaches 0 from the right, f(t) approaches 1. There is no single number L that f(t) gets arbitrarily close to as t Ä 0. (d) 1 3. (a) True (d) False (g) True
(b) True (e) False
(c) False (f) True
4. (a) False (d) True
(b) False (e) True
(c) True
5.
x
lim x Ä 0 kx k x kx k
does not exist because
x kx k
œ
x x
œ 1 if x 0 and
approaches 1. As x approaches 0 from the right,
x kx k
x kxk
œ
x x
œ 1 if x 0. As x approaches 0 from the left,
approaches 1. There is no single number L that all the
function values get arbitrarily close to as x Ä 0. 6. As x approaches 1 from the left, the values of
" x 1
become increasingly large and negative. As x approaches 1
from the right, the values become increasingly large and positive. There is no one number L that all the function values get arbitrarily close to as x Ä 1, so lim x" 1 does not exist. xÄ1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.2 Limit of a Function and Limit Laws
47
7. Nothing can be said about f(x) because the existence of a limit as x Ä x! does not depend on how the function is defined at x! . In order for a limit to exist, f(x) must be arbitrarily close to a single real number L when x is close enough to x! . That is, the existence of a limit depends on the values of f(x) for x near x! , not on the definition of f(x) at x! itself. 8. Nothing can be said. In order for lim f(x) to exist, f(x) must close to a single value for x near 0 regardless of the xÄ0
value f(0) itself. 9. No, the definition does not require that f be defined at x œ 1 in order for a limiting value to exist there. If f(1) is defined, it can be any real number, so we can conclude nothing about f(1) from lim f(x) œ 5. xÄ1
10. No, because the existence of a limit depends on the values of f(x) when x is near 1, not on f(1) itself. If lim f(x) exists, its value may be some number other than f(1) œ 5. We can conclude nothing about lim f(x), xÄ1
xÄ1
whether it exists or what its value is if it does exist, from knowing the value of f(1) alone. 11.
lim (2x 5) œ 2(7) 5 œ 14 5 œ 9
x Ä (
12. lim ax# 5x 2b œ (2)# 5(2) 2 œ 4 10 2 œ 4 xÄ#
13. lim 8(t 5)(t 7) œ 8(6 5)(6 7) œ 8 tÄ'
14.
lim ax$ 2x# 4x 8b œ (2)$ 2(2)# 4(2) 8 œ 8 8 8 8 œ 16
x Ä #
15. lim
x3
œ
x Ä # x6
17.
23 26
16. lim# 3s(2s 1) œ 3 ˆ 23 ‰ 2 ˆ 23 ‰ 1‘ œ 2 ˆ 43 1‰ œ
5 8
sÄ
$
lim 3(2x 1)# œ 3(2(1) 1)# œ 3(3)# œ 27
x Ä "
y2
18. lim
# y Ä # y 5y 6
19.
œ
œ
22 (2)# 5(#) 6
œ
4 4 10 6
œ
4 #0
œ
" 5
%
lim (5 y)%Î$ œ [5 (3)]%Î$ œ (8)%Î$ œ ˆ(8)"Î$ ‰ œ 2% œ 16
y Ä $
20. lim (2z 8)"Î$ œ (2(0) 8)"Î$ œ (8)"Î$ œ 2 zÄ!
21. lim
3
22. lim
È5h 4 2 h
h Ä ! È3h 1 1
hÄ0
œ
5 È4 2
23. lim
œ
x5
# x Ä & x 25
24.
œ
3 È3(0) 1 1
œ lim
hÄ0
œ
3 È1 1
È5h 4 2 h
†
œ
3 2
È5h 4 2 È5h 4 2
œ lim
a5h 4b 4
h Ä 0 hŠÈ5h 4 2‹
œ lim
5h
h Ä 0 hŠÈ5h 4 2‹
œ lim
5 4 x5
œ lim
x3
x Ä & (x 5)(x 5)
lim # x Ä $ x 4x 3
œ lim
œ lim
x3
1
x Ä & x5
x Ä $ (x 3)(x 1)
œ lim
œ
" 55
œ
" 10
1
œ
" 3 1
x Ä $ x 1
5
h Ä 0 È5h 4 2
œ "2
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
2 3
48 25.
Chapter 2 Limits and Continuity x# 3x "0 x5
lim
x Ä &
(x 5)(x 2) x5
œ lim
x Ä &
(x 5)(x 2) x2
26. lim
x# 7x "0 x#
œ lim
27. lim
t# t 2 t# 1
t Ä " (t 1)(t 1)
xÄ#
tÄ"
t# 3t 2 # t Ä " t t 2
29.
lim $ # x Ä # x 2x
lim
2x 4
5y$ 8y#
1 x 1 x x Ä 1 1
32. lim
xÄ0
33. lim
1 xc1
u% "
y# (5y 8)
œ lim
uÄ1
œ lim
4x x# x Ä % 2 Èx
œ lim
36. lim
lim
x Ä "
œ
(v 2) av# 2v 4b
Èx 3
x Ä * ˆÈ x 3 ‰ ˆ È x 3 ‰
x1 x Ä 1 Èx 3 2
37. lim
œ
Èx# 12 4 x2 xÄ2
x Ä "
œ lim
xÄ2
(x 2)(x 2)
x2 x Ä 2 È x # 5 3
lim
x Ä 2
8 16
1 ‰ x1
œ lim
xÄ1
œ lim
uÄ1
au# "b (u 1) u# u 1
"
œ lim
(x 2)(x 2)
444 (4)(8)
œ
x1
x2
œ 2
4 3
12 32
œ
3 8
xÄ%
œ lim ŠÈx 3 #‹ œ È4 2 œ 4 xÄ1
ax # 8 b *
œ lim
x Ä 1 (x 1) ŠÈx# 8 $‹
2 33
œ
(x 2) ŠÈx# 12 4‹
x Ä 2 Èx# 12 4
œ
2 1
œ lim x ˆ2 Èx‰ œ 4(2 2) œ 16
(x 1) ˆÈx 3 #‰ (x 3) 4 xÄ1
x Ä 1 È x # ) $
œ
œ
" 6
œ lim
(x 1) ŠÈx# 8 $‹
œ "3
ax# 12b 16
œ lim
x Ä 2 (x 2) ŠÈx# 12 4‹
œ
4 È16 4
ax 2b ŠÈx# 5 3‹
È x# 5 3 x2 x Ä 2
œ lim
" È9 3
œ
x Ä * Èx 3
(1 1)(1 1) 111
œ
# v Ä # (v 2) av 4b
x ˆ2 È x ‰ ˆ 2 È x ‰ 2 Èx xÄ%
œ lim
œ
v# 2v 4
œ lim
œ lim
œ lim
2
x Ä 1 ax 1bax 1b
x Ä 2 ŠÈx# 5 3‹ ŠÈx# 5 3‹
ax 2b ŠÈx# 5 3‹
œ #"
œ lim x1 œ 1
ŠÈx# 12 4‹ ŠÈx# 12 4‹
x Ä 2 (x 2) ŠÈx# 12 4‹
œ
œ
ŠÈx# 8 $‹ ŠÈx# 8 $‹
lim
(x 1)(x 1) lim x Ä 1 (x 1) ŠÈx# ) $‹
lim
5y 8
(x 1) ˆÈx 3 2‰ È ˆ x 3 #‰ ˆ È x 3 #‰ xÄ1
39. lim
40.
œ 21
œ lim
È x# 8 3 x1
œ lim
2 4
xÄ1
# v Ä # (v 2)(v 2) av 4b
x(4 x) x Ä % 2 Èx
œ
2
œ 13
1 œ lim Š ax 12x bax 1b † x ‹ œ lim
au# "b (u 1)(u 1) au# u 1b (u 1)
œ lim
Èx 3 x9
xÄ*
x
xÄ1
œ lim
35. lim
b 1b b ax c 1b c 1bax b 1b
ax
3 #
1 2 1 2
# y Ä ! 3y 16
xÄ1
œ
œ
# x Ä # x
œ lim ˆ 1 x x † ax
œ lim
t2
t Ä " t 2
œ lim
1cx x
12 11
œ
œ lim
œ lim
x Ä 1 x1
% v Ä # v 16
t2
2(x 2)
v$ 8
34. lim
xÄ#
œ lim
œ lim
$ u Ä 1 u 1
38.
t Ä " (t 2)(t 1)
# # y Ä ! y a3y 16b
x b1 1 x
œ lim (x 5) œ 2 5 œ 3
t Ä " t1
(t 2)(t 1)
œ lim
x Ä &
œ lim
# x Ä # x (x 2)
% # y Ä 0 3y 16y
31. lim
(t 2)(t 1)
œ lim
28.
30. lim
xÄ#
œ lim (x 2) œ & # œ 7
œ
œ
œ lim
" 2
ax 2b ŠÈx# 5 3‹
x Ä 2
È9 3 4
ax # 5 b 9
œ 23
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.2 Limit of a Function and Limit Laws 41.
2 È x# 5 x3 x Ä 3
lim
œ
Š2 Èx# 5‹ Š2 Èx# 5‹
œ lim
(x 3) Š2 Èx# 5‹
x Ä 3
9 x#
lim
œ
x Ä 3 (x 3) Š2 Èx# 5‹
4x x Ä 4 5 È x# 9
œ lim
x Ä 4 Š5 Èx# 9‹ Š5 Èx# 9‹
a4 xb Š5 Èx# 9‹
xÄ4
x Ä 3 (x 3) Š2 Èx# 5‹
a4 xb Š5 Èx# 9‹
œ lim
42. lim
16 x#
x Ä 3 (x 3) Š2 Èx# 5‹
(3 x)(3 x)
lim
œ lim
(4 x)(4 x)
xÄ4
œ lim
3x
x Ä 3 2 È x # 5
œ
6 2 È4
œ
3 2
a4 xb Š5 Èx# 9‹ 25 ax# 9b
xÄ4
a4 xb Š5 Èx# 9‹
œ lim
4 ax # 5 b
œ lim
œ lim
xÄ4
5 È x# 9 4x
œ
5 È25 8
œ
5 4
2
43. lim a2sin x 1b œ 2sin 0 1 œ 0 1 œ 1
44. lim sin2 x œ Š lim sin x‹ œ asin 0b2 œ 02 œ 0
45. lim sec x œ
46. lim tan x œ
xÄ0
xÄ0
47. lim
xÄ0
1 x sin x 3cos x
1
lim x Ä 0 cos x œ
œ
1 0 sin 0 3cos 0
1 cos 0
œ
œ
1 1
xÄ0
œ1
100 3
œ
xÄ0
xÄ0
sin x
lim x Ä 0 cos x
œ
sin 0 cos 0
œ
0 1
œ0
1 3
48. lim ax2 1ba2 cos xb œ a02 1ba2 cos 0b œ a1ba2 1b œ a1ba1b œ 1 xÄ0
49. x Ä lim1Èx 4 cosax 1b œ x Ä lim1Èx 4 † x Ä lim1cosax 1b œ È1 4 † cos 0 œ È4 1 † 1 œ È4 1 50. lim È7 sec2 x œ É lim a7 sec2 xb œ É7 lim sec2 x œ È7 sec2 0 œ É7 a1b2 œ 2È2 xÄ0
xÄ0
xÄ0
51. (a) quotient rule (c) sum and constant multiple rules
(b) difference and power rules
52. (a) quotient rule (c) difference and constant multiple rules
(b) power and product rules
53. (a) xlim f(x) g(x) œ ’xlim f(x)“ ’ x lim g(x)“ œ (5)(2) œ 10 Äc Äc Äc (b) xlim 2f(x) g(x) œ 2 ’xlim f(x)“ ’ xlim g(x)“ œ 2(5)(2) œ 20 Äc Äc Äc (c) xlim [f(x) 3g(x)] œ xlim f(x) 3 xlim g(x) œ 5 3(2) œ 1 Äc Äc Äc lim f(x) f(x) 5 5 xÄc (d) xlim œ lim f(x) lim g(x) œ 5(2) œ 7 Ä c f(x) g(x) x
54. (a) (b) (c) (d) 55. (a) (b)
Äc
x
Äc
lim [g(x) 3] œ lim g(x) lim 3 œ $ $ œ !
xÄ%
xÄ%
xÄ%
lim xf(x) œ lim x † lim f(x) œ (4)(0) œ 0
xÄ%
xÄ%
xÄ%
#
lim [g(x)] œ ’ lim g(x)“ œ [3]# œ 9
xÄ%
#
g(x) x Ä % f(x) 1
lim
xÄ%
œ
Ä%
lim g(x)
x
lim f(x) lim 1
xÄ%
xÄ%
œ
3 01
œ3
lim [f(x) g(x)] œ lim f(x) lim g(x) œ 7 (3) œ 4
xÄb
xÄb
xÄb
lim f(x) † g(x) œ ’ lim f(x)“ ’ lim g(x)“ œ (7)(3) œ 21
xÄb
xÄb
xÄb
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
49
50
Chapter 2 Limits and Continuity lim 4g(x) œ ’ lim 4“ ’ lim g(x)“ œ (4)(3) œ 12
(c)
xÄb
xÄb
xÄb
xÄb
xÄb
7 3
œ 37
lim [p(x) r(x) s(x)] œ lim p(x) lim r(x) lim s(x) œ 4 0 (3) œ 1
56. (a)
x Ä #
x Ä #
x Ä #
x Ä #
lim p(x) † r(x) † s(x) œ ’ lim p(x)“ ’ lim r(x)“ ’ lim s(x)“ œ (4)(0)(3) œ 0
(b)
x Ä #
x Ä #
x Ä #
x Ä #
lim [4p(x) 5r(x)]/s(x) œ ’4 lim p(x) 5 lim r(x)“ ‚ lim s(x) œ [4(4) 5(0)]/3 œ
(c)
x Ä #
57. lim
hÄ!
x Ä #
(1 h)# 1# h
œ lim
hÄ!
(2 h)# (2)# h hÄ!
58. lim 59. lim
hÄ!
ˆ #" h ‰ ˆ "# ‰ h hÄ! È7 h È7 h hÄ!
61. lim
1 2h h# 1 h
œ lim
hÄ!
44hh# 4 h hÄ!
œ lim
[3(2 h) 4] [3(2) 4] h
60. lim
œ
xÄb
lim f(x)/g(x) œ lim f(x)/ lim g(x) œ
(d)
œ lim
2 2 h "
œ lim
h(2 h) h
œ lim
hÄ!
hÄ!
œ lim (h 4) œ 4 hÄ!
2 (2 h) 2h(# h)
hÄ!
h ŠÈ7 h È7‹
h
œ lim
œ "4
h Ä ! h(4 2h)
œ lim
(7 h) 7
h Ä ! h ŠÈ7 h È7‹
œ lim
h
h Ä ! h ŠÈ7hÈ7‹
œ lim
È3(0 h) 1 È3(0) 1 h hÄ!
œ lim
3
h Ä ! È3h 1 1
œ
œ lim
ŠÈ3h 1 "‹ ŠÈ3h 1 "‹ h ŠÈ3h 1 "‹
hÄ!
(3h 1) "
œ lim
h Ä ! h ŠÈ3h 1 1 ‹
œ lim
3h
h Ä ! h ŠÈ3h 1 "‹
3 #
63. lim È5 2x# œ È5 2(0)# œ È5 and lim È5 x# œ È5 (0)# œ È5; by the sandwich theorem, xÄ!
xÄ!
lim f(x) œ È5
xÄ!
64. lim a2 x# b œ 2 0 œ 2 and lim 2 cos x œ 2(1) œ 2; by the sandwich theorem, lim g(x) œ 2 xÄ!
65. (a)
xÄ!
lim Š1
xÄ!
x# 6‹
œ1
0 6
xÄ!
œ 1 and lim 1 œ 1; by the sandwich theorem, lim
(b) For x Á 0, y œ (x sin x)/(2 2 cos x) lies between the other two graphs in the figure, and the graphs converge as x Ä 0.
66. (a)
lim Š "#
xÄ!
lim
xÄ!
1cos x x#
x# 24 ‹
œ lim
1
xÄ! #
lim
x#
x Ä ! #4
œ
" #
x sin x
x Ä ! 22 cos x
xÄ!
0œ
" #
and lim
"
xÄ! #
œ1
œ "# ; by the sandwich theorem,
œ "# .
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
"
h Ä ! È 7 h È 7
" #È 7
62. lim
"6 3
œ lim (2 h) œ 2
h(h 4) h
ŠÈ7 h È7‹ ŠÈ7 h È7‹
hÄ!
x Ä #
œ3
œ lim
2h
hÄ!
œ lim
3h
hÄ! h
x Ä #
Section 2.2 Limit of a Function and Limit Laws (b) For all x Á 0, the graph of f(x) œ (1 cos x)/x# lies between the line y œ "# and the parabola yœ
" #
x# /24, and the graphs converge as x Ä 0.
67. (a) f(x) œ ax# *b/(x 3) x 3.1 f(x) 6.1 2.9 5.9
x f(x)
3.01 6.01
3.001 6.001
3.0001 6.0001
3.00001 6.00001
3.000001 6.000001
2.99 5.99
2.999 5.999
2.9999 5.9999
2.99999 5.99999
2.999999 5.999999
The estimate is lim f(x) œ 6. x Ä $
(b)
(c) f(x) œ
x# 9 x3
œ
(x 3)(x 3) x3
œ x 3 if x Á 3, and lim (x 3) œ 3 3 œ 6. x Ä $
68. (a) g(x) œ ax# #b/ Šx È2‹ x g(x)
1.4 2.81421
1.41 2.82421
1.414 2.82821
1.4142 2.828413
1.41421 2.828423
1.414213 2.828426
(b)
(c) g(x) œ
x# 2 x È2
œ
Šx È2‹ Šx È2‹ Šx È2‹
œ x È2 if x Á È2, and
69. (a) G(x) œ (x 6)/ ax# 4x 12b x 5.9 5.99 G(x) .126582 .1251564 x G(x)
6.1 .123456
6.01 .124843
5.999 .1250156 6.001 .124984
lim
x Ä È#
5.9999 .1250015 6.0001 .124998
Šx È2‹ œ È2 È2 œ 2È2.
5.99999 .1250001 6.00001 .124999
5.999999 .1250000 6.000001 .124999
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
51
52
Chapter 2 Limits and Continuity (b)
(c) G(x) œ
x6 ax# 4x 12b
œ
x6 (x 6)(x 2)
œ
" x#
70. (a) h(x) œ ax# 2x 3b / ax# 4x 3b x 2.9 2.99 h(x) 2.052631 2.005025 x h(x)
3.1 1.952380
3.01 1.995024
"
if x Á 6, and lim
x Ä ' x 2
œ
" ' 2
œ "8 œ 0.125.
2.999 2.000500
2.9999 2.000050
2.99999 2.000005
2.999999 2.0000005
3.001 1.999500
3.0001 1.999950
3.00001 1.999995
3.000001 1.999999
(b)
(c) h(x) œ
x# 2x 3 x# 4x 3
œ
(x 3)(x 1) (x 3)(x 1)
œ
x1 x1
71. (a) f(x) œ ax# 1b / akxk 1b x 1.1 1.01 f(x) 2.1 2.01 .9 1.9
x f(x)
.99 1.99
if x Á 3, and lim
x1
x Ä $ x1
œ
31 31
œ
4 #
œ 2.
1.001 2.001
1.0001 2.0001
1.00001 2.00001
1.000001 2.000001
.999 1.999
.9999 1.9999
.99999 1.99999
.999999 1.999999
(b)
(c) f(x) œ
x# " kx k 1
(x 1)(x 1)
1 œ (x x1)(x 1) (x 1)
œ x 1, x 0 and x Á 1 , and lim (1 x) œ 1 (1) œ 2. x Ä 1 œ 1 x, x 0 and x Á 1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.2 Limit of a Function and Limit Laws 72. (a) F(x) œ ax# 3x 2b / a2 kxkb x 2.1 2.01 F(x) 1.1 1.01 1.9 .9
x F(x)
1.99 .99
2.001 1.001
2.0001 1.0001
2.00001 1.00001
2.000001 1.000001
1.999 .999
1.9999 .9999
1.99999 .99999
1.999999 .999999
(b)
(c) F(x) œ
x# 3x 2 2 kx k
(x 2)(x 1)
œ (x 2)(x# x") 2x
73. (a) g()) œ (sin ))/) ) .1 g()) .998334
, x 0 , and lim (x 1) œ 2 1 œ 1. x Ä # œ x 1, x 0 and x Á 2
.01 .999983
.001 .999999
.0001 .999999
.00001 .999999
.000001 .999999
.1 .998334
.01 .999983
.001 .999999
.0001 .999999
.00001 .999999
.000001 .999999
74. (a) G(t) œ (1 cos t)/t# t .1 G(t) .499583
.01 .499995
.001 .499999
.0001 .5
.00001 .5
.000001 .5
.1 .499583
.01 .499995
.001 .499999
.0001 .5
.00001 .5
.000001 .5
) g()) lim g()) œ 1
)Ä!
(b)
t G(t)
lim G(t) œ 0.5
tÄ!
(b)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
53
54
Chapter 2 Limits and Continuity
75. xlim f(x) exists at those points c where xlim x% œ xlim x# . Thus, c% œ c# Ê c# a1 c# b œ 0 Ê c œ 0, 1, or 1. Äc Äc Äc Moreover, lim f(x) œ lim x# œ 0 and lim f(x) œ lim f(x) œ 1. xÄ!
xÄ!
x Ä 1
xÄ1
76. Nothing can be concluded about the values of f, g, and h at x œ 2. Yes, f(2) could be 0. Since the conditions of the sandwich theorem are satisfied, lim f(x) œ 5 Á 0. xÄ#
lim f(x) lim 5 % xÄ% œ xÄlim x lim 2 œ
f(x)5 x Ä % x 2
77. 1 œ lim
xÄ%
lim f(x) 5
xÄ%
%#
xÄ%
xÄ%
78. (a) 1 œ lim
f(x) x#
lim f(x) lim f(x) œ xÄlim# x# œ xÄ %# Ê
(b) 1 œ lim
f(x) x#
œ ’ lim
x Ä # x Ä #
xÄ
#
x Ä #
79. (a) 0 œ 3 † 0 œ ’ lim
xÄ#
Ê lim f(x) 5 œ 2(1) Ê lim f(x) œ 2 5 œ 7. xÄ%
lim f(x) œ 4.
x Ä #
f(x) lim x" “ x “ ’x Ä #
œ ’ lim
x Ä #
f(x) ˆ " ‰ x “ #
Ê
lim
x Ä #
f(x) x
œ 2.
f(x) 5 x # “ ’xlim Ä#
5 (x 2)“ œ lim ’Š f(x) x # ‹ (x 2)“ œ lim [f(x) 5] œ lim f(x) 5
f(x) 5 x # “ ’xlim Ä#
(x 2)“ Ê lim f(x) œ 5 as in part (a).
xÄ#
Ê lim f(x) œ 5.
xÄ#
xÄ#
xÄ#
(b) 0 œ 4 † 0 œ ’ lim
xÄ#
80. (a) 0 œ 1 † 0 œ ’ lim
f(x) # “ ’ lim xÄ! x xÄ!
(b) 0 œ 1 † 0 œ 81. (a)
lim x sin
xÄ!
(b) 1 Ÿ sin
82. (a)
" x
’ lim f(x) # “ ’ lim xÄ! x xÄ!
" x
xÄ#
#
x“ œ ’ lim
f(x)
# xÄ! x
x“ œ
lim ’ f(x) x# xÄ!
# “ ’ lim x# “ œ lim ’ f(x) x# † x “ œ lim f(x). That is, lim f(x) œ 0.
xÄ!
† x“ œ
xÄ!
lim f(x) . xÄ! x
That is,
xÄ!
lim f(x) xÄ! x
œ 0.
œ0
Ÿ 1 for x Á 0:
x 0 Ê x Ÿ x sin
" x
Ÿ x Ê lim x sin
" x
œ 0 by the sandwich theorem;
x 0 Ê x x sin
" x
x Ê lim x sin
" x
œ 0 by the sandwich theorem.
xÄ! xÄ!
lim x# cos ˆ x"$ ‰ œ 0
xÄ!
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
xÄ!
Section 2.3 The Precise Definition of a Limit (b) 1 Ÿ cos ˆ x"$ ‰ Ÿ 1 for x Á 0 Ê x# Ÿ x# cos ˆ x"$ ‰ Ÿ x# Ê lim x# cos ˆ x"$ ‰ œ 0 by the sandwich xÄ!
theorem since lim x# œ 0. xÄ!
83-88. Example CAS commands: Maple: f := x -> (x^4 16)/(x 2); x0 := 2; plot( f(x), x œ x0-1..x0+1, color œ black, title œ "Section 2.2, #83(a)" ); limit( f(x), x œ x0 ); In Exercise 85, note that the standard cube root, x^(1/3), is not defined for x (surd(x+1, 3) 1)/x. Mathematica: (assigned function and values for x0 and h may vary) Clear[f, x] f[x_]:=(x3 x2 5x 3)/(x 1)2 x0= 1; h = 0.1; Plot[f[x],{x, x0 h, x0 h}] Limit[f[x], x Ä x0] 2.3 THE PRECISE DEFINITION OF A LIMIT 1. Step 1: Step 2:
kx 5k $ Ê $ x 5 $ Ê $ 5 x $ 5 $ 5 œ 7 Ê $ œ 2, or $ 5 œ 1 Ê $ œ 4. The value of $ which assures kx 5k $ Ê 1 x 7 is the smaller value, $ œ 2.
Step 1: Step 2:
kx 2k $ Ê $ x 2 $ Ê $ # x $ 2 $ 2 œ 1 Ê $ œ 1, or $ 2 œ 7 Ê $ œ 5. The value of $ which assures kx 2k $ Ê 1 x 7 is the smaller value, $ œ 1.
Step 1: Step 2:
kx (3)k $ Ê $ x $ $ Ê $ 3 x $ 3 $ 3 œ 7# Ê $ œ "# , or $ $ œ "# Ê $ œ 5# .
2.
3.
The value of $ which assures kx (3)k $ Ê 7# x "# is the smaller value, $ œ "# . 4.
Step 1:
¸x ˆ 3# ‰¸ $ Ê $ x
3 #
$ Ê $
3 #
x$
3 #
Step 2:
œ 7# Ê $ œ #, or $ 3# œ "# Ê $ œ 1. The value of $ which assures ¸x ˆ 3# ‰¸ $ Ê 7# x "# is the smaller value, $ œ ".
Step 1:
¸x "# ¸ $ Ê $ x
$
3 #
5. " #
$ Ê $
" #
x$
" #
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
55
56
Chapter 2 Limits and Continuity Step 2:
" or $ #" œ 47 Ê $ œ 14 . "¸ 4 ¸ The value of $ which assures x # $ Ê 9 x
$
" #
œ
4 9
Ê $œ
" 18 ,
4 7
is the smaller value, $ œ
" 18 .
6.
Step 1: Step 2:
kx 3k $ Ê $ x 3 $ Ê $ 3 x $ 3 $ $ œ 2.7591 Ê $ œ 0.2409, or $ $ œ 3.2391 Ê $ œ 0.2391. The value of $ which assures kx 3k $ Ê 2.7591 x 3.2391 is the smaller value, $ œ 0.2391.
7. Step 1: Step 2:
kx 5k $ Ê $ x 5 $ Ê $ 5 x $ 5 From the graph, $ 5 œ 4.9 Ê $ œ 0.1, or $ 5 œ 5.1 Ê $ œ 0.1; thus $ œ 0.1 in either case.
8. Step 1: Step 2:
kx (3)k $ Ê $ x 3 $ Ê $ 3 x $ 3 From the graph, $ 3 œ 3.1 Ê $ œ 0.1, or $ 3 œ 2.9 Ê $ œ 0.1; thus $ œ 0.1.
9. Step 1: Step 2:
kx 1k $ Ê $ x 1 $ Ê $ 1 x $ 1 9 7 From the graph, $ 1 œ 16 Ê $ œ 16 , or $ 1 œ 25 16 Ê $ œ
10. Step 1: Step 2:
kx 3k $ Ê $ x 3 $ Ê $ 3 x $ 3 From the graph, $ 3 œ 2.61 Ê $ œ 0.39, or $ 3 œ 3.41 Ê $ œ 0.41; thus $ œ 0.39.
11. Step 1:
kx 2k $ Ê $ x 2 $ Ê $ 2 x $ 2 From the graph, $ 2 œ È3 Ê $ œ 2 È3 ¸ 0.2679, or $ 2 œ È5 Ê $ œ È5 2 ¸ 0.2361; thus $ œ È5 2.
Step 2:
12. Step 1: Step 2:
9 16 ;
thus $ œ
kx (1)k $ Ê $ x 1 $ Ê $ 1 x $ 1 From the graph, $ 1 œ thus $ œ
È5 2 # .
È5 #
Ê $œ
È5 2 #
¸ 0.1180, or $ 1 œ
13. Step 1: Step 2:
kx (1)k $ Ê $ x 1 $ Ê $ 1 x $ 1 7 16 From the graph, $ 1 œ 16 9 Ê $ œ 9 ¸ 0.77, or $ 1 œ 25 Ê
14. Step 1:
¸x "# ¸ $ Ê $ x
Step 2:
7 16 .
From the graph, $ thus $ œ 0.00248.
" #
œ
" # 1 2.01
$ Ê $ Ê $œ
1 2
" #
x$
" #.01
" #
¸ 0.00248, or $
" #
œ
È3 #
9 25
Ê $œ
2 È3 #
œ 0.36; thus $ œ
1 1.99
Ê $œ
1 1.99
¸ 0.1340;
9 25
" #
œ 0.36.
¸ 0.00251;
15. Step 1: Step 2:
k(x 1) 5k 0.01 Ê kx 4k 0.01 Ê 0.01 x 4 0.01 Ê 3.99 x 4.01 kx 4k $ Ê $ x 4 $ Ê $ 4 x $ 4 Ê $ œ 0.01.
16. Step 1:
k(2x 2) (6)k 0.02 Ê k2x 4k 0.02 Ê 0.02 2x 4 0.02 Ê 4.02 2x 3.98 Ê 2.01 x 1.99 kx (2)k $ Ê $ x 2 $ Ê $ 2 x $ 2 Ê $ œ 0.01.
Step 2: 17. Step 1: Step 2:
¹Èx 1 "¹ 0.1 Ê 0.1 Èx 1 " 0.1 Ê 0.9 Èx 1 1.1 Ê 0.81 x 1 1.21 Ê 0.19 x 0.21 kx 0k $ Ê $ x $ . Then, $ œ !Þ"* Ê $ œ !Þ"* or $ œ !Þ#"; thus, $ œ 0.19.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.3 The Precise Definition of a Limit 18. Step 1: Step 2:
¸Èx "# ¸ 0.1 Ê 0.1 Èx "# 0.1 Ê 0.4 Èx 0.6 Ê 0.16 x 0.36 ¸x "4 ¸ $ Ê $ x 4" $ Ê $ 4" x $ 4" . Then, $
19. Step 1: Step 2:
20. Step 1: Step 2:
21. Step 1: Step 2:
22. Step 1: Step 2:
57
" 4
œ 0.16 Ê $ œ 0.09 or $
" 4
œ 0.36 Ê $ œ 0.11; thus $ œ 0.09.
¹È19 x $¹ " Ê " È19 x $ 1 Ê 2 È19 x % Ê 4 19 x 16 Ê % x 19 16 Ê 15 x 3 or 3 x 15 kx 10k $ Ê $ x 10 $ Ê $ 10 x $ 10. Then $ 10 œ 3 Ê $ œ 7, or $ 10 œ 15 Ê $ œ 5; thus $ œ 5. ¹Èx 7 4¹ 1 Ê " Èx 7 % 1 Ê 3 Èx 7 5 Ê 9 x 7 25 Ê 16 x 32 kx 23k $ Ê $ x 23 $ Ê $ 23 x $ 23. Then $ 23 œ 16 Ê $ œ 7, or $ 23 œ 32 Ê $ œ 9; thus $ œ 7. ¸ "x 4" ¸ 0.05 Ê 0.05
" x
" 4
0.05 Ê 0.2
" x
0.3 Ê
kx 4k $ Ê $ x 4 $ Ê $ 4 x $ 4. 2 2 Then $ % œ 10 3 or $ œ 3 , or $ 4 œ 5 or $ œ 1; thus $ œ 3 .
10 #
x
10 3
or
10 3
x 5.
kx# 3k !.1 Ê 0.1 x# 3 0.1 Ê 2.9 x# 3.1 Ê È2.9 x È3.1 ¹x È3¹ $ Ê $ x È3 $ Ê $ È3 x $ È3. Then $ È3 œ È2.9 Ê $ œ È3 È2.9 ¸ 0.0291, or $ È3 œ È3.1 Ê $ œ È3.1 È3 ¸ 0.0286; thus $ œ 0.0286.
23. Step 1: Step 2:
kx# 4k 0.5 Ê 0.5 x# 4 0.5 Ê 3.5 x# 4.5 Ê È3.5 kxk È4.5 Ê È4.5 x È3.5, for x near 2. kx (2)k $ Ê $ x 2 $ Ê $ # x $ 2. Then $ # œ È4.5 Ê $ œ È4.5 # ¸ 0.1213, or $ # œ È3.5 Ê $ œ # È3.5 ¸ 0.1292; thus $ œ È4.5 2 ¸ 0.12.
24. Step 1: Step 2:
25. Step 1: Step 2:
¸ "x (1)¸ 0.1 Ê 0.1
" x
1 0.1 Ê 11 10
" x
9 10 10 10 10 Ê 10 11 x 9 or 9 x 11 .
kx (1)k $ Ê $ x 1 $ Ê $ " x $ ". " 10 " Then $ " œ 10 9 Ê $ œ 9 , or $ " œ 11 Ê $ œ 11 ; thus $ œ
" 11 .
kax# 5b 11k " Ê kx# 16k 1 Ê " x# 16 1 Ê 15 x# 17 Ê È15 x È17. kx 4k $ Ê $ x 4 $ Ê $ % x $ %. Then $ % œ È15 Ê $ œ % È15 ¸ 0.1270, or $ % œ È17 Ê $ œ È17 % ¸ 0.1231; thus $ œ È17 4 ¸ 0.12.
26. Step 1: Step 2:
27. Step 1: Step 2:
¸ 120 ¸ x 5 " Ê "
120 x
&1 Ê 4
120 x
6 Ê
" 4
x 120
" 6
Ê 30 x 20 or 20 x 30.
kx 24k $ Ê $ x 24 $ Ê $ 24 x $ 24. Then $ 24 œ 20 Ê $ œ 4, or $ 24 œ 30 Ê $ œ 6; thus Ê $ œ 4. kmx 2mk 0.03 Ê 0.03 mx 2m 0.03 Ê 0.03 2m mx 0.03 2m Ê 0.03 2 0.03 m x2 m . kx 2k $ Ê $ x 2 $ Ê $ 2 x $ 2. 0.03 0.03 Then $ 2 œ 2 0.03 m Ê $ œ m , or $ 2 œ # m Ê $ œ
0.03 m .
In either case, $ œ
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
0.03 m .
58
Chapter 2 Limits and Continuity kmx 3mk c Ê c mx 3m c Ê c 3m mx c 3m Ê 3
28. Step 1:
kx 3k $ Ê $ x 3 $ Ê $ $ B $ $. Then $ $ œ $ mc Ê $ œ mc , or $ $ œ $ mc Ê $ œ
Step 2:
¸(mx b) ˆ m# b‰¸ - Ê c mx m# c Ê c ¸x "# ¸ $ Ê $ x "# $ Ê $ "# x $ "# .
29. Step 1: Step 2:
Then $
" #
œ
" #
c m
Ê $œ
c m,
or $
" #
œ
" #
c m
c m. m #
Ê $œ
c m
x 3
In either case, $ œ
c m.
c m. " #
In either case, $ œ
c m.
mx c
m #
Ê
c m
c m
x
" #
c m.
k(mx b) (m b)k 0.05 Ê 0.05 mx m 0.05 Ê 0.05 m mx 0.05 m 0.05 Ê 1 0.05 m x" m .
30. Step 1:
kx 1k $ Ê $ x 1 $ Ê $ " x $ ". 0.05 0.05 Then $ " œ " 0.05 m Ê $ œ m , or $ " œ " m Ê $ œ
Step 2:
0.05 m .
In either case, $ œ
0.05 m .
31. lim (3 2x) œ 3 2(3) œ 3 xÄ3
ka3 2xb (3)k 0.02 Ê 0.02 6 2x 0.02 Ê 6.02 2x 5.98 Ê 3.01 x 2.99 or 2.99 x 3.01. 0 k x 3k $ Ê $ x 3 $ Ê $ $ x $ $ . Then $ $ œ 2.99 Ê $ œ 0.01, or $ $ œ 3.01 Ê $ œ 0.01; thus $ œ 0.01.
Step 1: Step 2:
32.
lim (3x #) œ (3)(1) 2 œ 1
x Ä 1
k(3x 2) 1k 0.03 Ê 0.03 3x 3 0.03 Ê 0.01 x 1 0.01 Ê 1.01 x 0.99. kx (1)k $ Ê $ x 1 $ Ê $ " x $ 1. Then $ " œ 1.01 Ê $ œ 0.01, or $ " œ 0.99 Ê $ œ 0.01; thus $ œ 0.01.
Step 1: Step 2:
33. lim
x# 4
x Ä # x#
34.
35.
œ lim
xÄ#
#
(x 2)(x 2) (x 2)
œ lim (x 2) œ # # œ 4, x Á 2 xÄ#
(x 2)(x 2) (x 2)
Step 1:
¹Š xx 24 ‹
Step 2:
Ê 1.95 x 2.05, x Á 2. kx 2k $ Ê $ x 2 $ Ê $ 2 x $ 2. Then $ 2 œ 1.95 Ê $ œ 0.05, or $ 2 œ 2.05 Ê $ œ 0.05; thus $ œ 0.05.
lim
x Ä &
x# 6x 5 x5
4¹ 0.05 Ê 0.05
œ lim
x Ä &
(x 5)(x 1) (x 5)
% 0.05 Ê 3.95 x 2 4.05, x Á 2
œ lim (x 1) œ 4, x Á 5. x Ä &
(x 5)(x ") (x 5)
Step 1:
# ¹Š x x 6x5 5 ‹
Step 2:
Ê 5.05 x 4.95, x Á 5. kx (5)k $ Ê $ x 5 $ Ê $ & x $ &. Then $ & œ 5.05 Ê $ œ 0.05, or $ & œ 4.95 Ê $ œ 0.05; thus $ œ 0.05.
(4)¹ 0.05 Ê 0.05
4 0.05 Ê 4.05 x 1 3.95, x Á 5
lim È1 5x œ È1 5(3) œ È16 œ 4
x Ä $
Step 1:
¹È1 5x 4¹ 0.5 Ê 0.5 È1 5x 4 0.5 Ê 3.5 È1 5x 4.5 Ê 12.25 1 5x 20.25
Step 2:
Ê 11.25 5x 19.25 Ê 3.85 x 2.25. kx (3)k $ Ê $ x 3 $ Ê $ $ x $ $. Then $ $ œ 3.85 Ê $ œ 0.85, or $ $ œ 2.25 Ê 0.75; thus $ œ 0.75.
36. lim
4
xÄ# x
Step 1:
œ
4 #
œ2
¸ 4x 2¸ 0.4 Ê 0.4
4 x
2 0.4 Ê 1.6
4 x
2.4 Ê
10 16
x 4
10 24
Ê
10 4
x
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
10 6
or
5 3
x 25 .
Section 2.3 The Precise Definition of a Limit Step 2:
59
kx 2k $ Ê $ x 2 $ Ê $ # x $ #. Then $ # œ 53 Ê $ œ "3 , or $ # œ #5 Ê $ œ "# ; thus $ œ 3" .
37. Step 1: Step 2:
k(9 x) 5k % Ê % 4 x % Ê % 4 x % 4 Ê % % x 4 % Ê % % x 4 %. kx 4k $ Ê $ x 4 $ Ê $ % x $ %. Then $ 4 œ % 4 Ê $ œ %, or $ % œ % % Ê $ œ %. Thus choose $ œ %.
38. Step 1:
k(3x 7) 2k % Ê % 3x 9 % Ê 9 % 3x * % Ê 3
Step 2:
39. Step 1: Step 2:
40. Step 1: Step 2:
41. Step 1: Step 2:
42. Step 1: Step 2:
43. Step 1: Step 2:
x 3 3% .
kx 3k $ Ê $ x 3 $ Ê $ 3 x $ 3. Then $ 3 œ $ 3% Ê $ œ 3% , or $ 3 œ 3 3% Ê $ œ 3% . Thus choose $ œ 3% . ¹Èx 5 2¹ % Ê % Èx 5 2 % Ê 2 % Èx 5 2 % Ê (2 %)# x 5 (2 %)# Ê (2 %)# & x (2 %)# 5. kx 9k $ Ê $ x 9 $ Ê $ 9 x $ 9. Then $ * œ %# %% * Ê $ œ %% %# , or $ * œ %# %% * Ê $ œ %% %# . Thus choose the smaller distance, $ œ %% %# . ¹È4 x 2¹ % Ê % È4 x 2 % Ê 2 % È4 x 2 % Ê (2 %)# % x (2 %)# Ê (2 %)# x 4 (2 %)# Ê (2 %)# % x (2 %)# %. k x 0k $ Ê $ x $ . Then $ œ (2 %)# 4 œ %# %% Ê $ œ %% %# , or $ œ (2 %)# 4 œ 4% %# . Thus choose the smaller distance, $ œ 4% %# . For x Á 1, kx# 1k % Ê % x# " % Ê " % x# " % Ê È1 % kxk È1 % Ê È" % x È1 % near B œ ". kx 1k $ Ê $ x 1 $ Ê $ " x $ ". Then $ " œ È1 % Ê $ œ " È1 %, or $ 1 œ È" % Ê $ œ È" % 1. Choose $ œ min š" È1 %ß È1 % "›, that is, the smaller of the two distances. For x Á 2, kx# 4k % Ê % x# 4 % Ê 4 % x# 4 % Ê È4 % kxk È4 % Ê È4 % x È4 % near B œ 2. kx (2)k $ Ê $ x 2 $ Ê $ 2 x $ 2. Then $ 2 œ È% % Ê $ œ È% % #, or $ # œ È% % Ê $ œ # È% %. Choose $ œ min šÈ% % #ß # È% %› . ¸ "x 1¸ % Ê %
" x
"% Ê "%
" x
"% Ê
" 1%
% "%,
" 1%.
x
kx 1k $ Ê $ x 1 $ Ê " $ x " $ . Then " $ œ " " % Ê $ œ " " " % œ " % % , or " $ œ " " % Ê $ œ Choose $ œ
44. Step 1:
% 3
" "%
"œ
% "%.
the smaller of the two distances.
¸ x"# "3 ¸ % Ê %
" x#
" 3
% Ê
" 3
%
" x#
" 3
% Ê
1 3% 3
" x#
1 $% 3
3 È $. Ê É 1 3 $% kxk É " 3 $% , or É " 3 $% x É "$ % for x near
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Ê
3 "
%$ x#
3 "
%$ 60
Chapter 2 Limits and Continuity Step 2:
¹x È3¹ $ Ê $ x È3 $ Ê È3 $ x È3 $ . Then È3 $ œ É " 3 $% Ê $ œ È3 É " 3 $% , or È3 $ œ É " 3 $% Ê $ œ É " 3 $% È3. Choose $ œ min šÈ3 É " 3 $% ß É " 3 $% È3›.
45. Step 1: Step 2:
46. Step 1: Step 2:
47. Step 1:
#
¹Š xx 3* ‹ (6)¹ % Ê % (x 3) 6 %, x Á 3 Ê % x 3 % Ê % $ x % $. kx (3)k $ Ê $ x 3 $ Ê $ $ x $ 3. Then $ $ œ % $ Ê $ œ %, or $ $ œ % $ Ê $ œ %. Choose $ œ %. #
¹Š xx 11 ‹ 2¹ % Ê % (x 1) 2 %, x Á 1 Ê " % x " %. kx 1k $ Ê $ x 1 $ Ê " $ x " $ . Then " $ œ " % Ê $ œ %, or " $ œ " % Ê $ œ %. Choose $ œ %. x 1: l(4 2x) 2l % Ê ! 2 2x % since x 1Þ Thus, 1
% #
x !;
x 1: l(6x 4) 2l % Ê ! Ÿ 6x 6 % since x 1. Thus, " Ÿ x 1 6% . Step 2:
48. Step 1: Step 2:
kx 1k $ Ê $ x 1 $ Ê " $ x 1 $ . Then 1 $ œ " #% Ê $ œ #% , or " $ œ 1 6% Ê $ œ 6% . Choose $ œ 6% . x !: k2x 0k % Ê % 2x ! Ê #% x 0; x 0: ¸ x# !¸ % Ê ! Ÿ x #%.
k x 0k $ Ê $ x $ . Then $ œ #% Ê $ œ #% , or $ œ #% Ê $ œ #%. Choose $ œ #% .
49. By the figure, x Ÿ x sin
" x
Ÿ x for all x 0 and x x sin
then by the sandwich theorem, in either case, lim x sin xÄ!
50. By the figure, x# Ÿ x# sin
" x
" x
" x
x for x 0. Since lim (x) œ lim x œ 0, xÄ!
œ 0.
xÄ!
Ÿ x# for all x except possibly at x œ 0. Since lim ax# b œ lim x# œ 0, then
by the sandwich theorem, lim x# sin xÄ!
" x
xÄ!
œ 0.
xÄ!
51. As x approaches the value 0, the values of g(x) approach k. Thus for every number % 0, there exists a $ ! such that ! kx 0k $ Ê kg(x) kk %. 52. Write x œ h c. Then ! lx cl $ Í $ x c $ , x Á c Í $ ah cb c $ , h c Á c Í $ h $ , h Á ! Í ! lh !l $ . Thus, limfaxb œ L Í for any % !, there exists $ ! such that lfaxb Ll % whenever ! lx cl $ x Äc
Í lfah cb Ll % whenever ! lh !l $ Í lim fah cb œ L. hÄ!
53. Let f(x) œ x# . The function values do get closer to 1 as x approaches 0, but lim f(x) œ 0, not 1. The function f(x) œ x# never gets arbitrarily close to 1 for x near 0.
xÄ!
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.3 The Precise Definition of a Limit
61
54. Let f(x) œ sin x, L œ "# , and x! œ 0. There exists a value of x (namely, x œ 16 ) for which ¸sin x "# ¸ % for any given
% 0. However, lim sin x œ 0, not "# . The wrong statement does not require x to be arbitrarily close to x! . As another\ xÄ!
example, let g(x) œ sin "x , L œ #" , and x! œ 0. We can choose infinitely many values of x near 0 such that sin you can see from the accompanying figure. However, lim sin xÄ!
" x
" x
œ
" #
as
fails to exist. The wrong statement does not require all
values of x arbitrarily close to x! œ 0 to lie within % 0 of L œ "# . Again you can see from the figure that there are also infinitely many values of x near 0 such that sin "x œ 0. If we choose % ¸sin "x #" ¸ % for all values of x sufficiently near x! œ 0.
#
55. kA *k Ÿ 0.01 Ê 0.01 Ÿ 1 ˆ x# ‰ 9 Ÿ 0.01 Ê 8.99 Ÿ Ê
2É 8.99 1
ŸxŸ
2É 9.01 1
1 x# 4
" 4
we cannot satisfy the inequality
Ÿ 9.01 Ê
4 1
(8.99) Ÿ x# Ÿ
4 1
(9.01)
or 3.384 Ÿ x Ÿ 3.387. To be safe, the left endpoint was rounded up and the right
endpoint was rounded down. 56. V œ RI Ê (120)(10) 51
V R
ŸRŸ
œ I Ê ¸ VR 5¸ Ÿ 0.1 Ê 0.1 Ÿ (120)(10) 49
120 R
5 Ÿ 0.1 Ê 4.9 Ÿ
120 R
Ÿ 5.1 Ê
10 49
R 1#0
10 51
Ê
Ê 23.53 Ÿ R Ÿ 24.48.
To be safe, the left endpoint was rounded up and the right endpoint was rounded down. 57. (a) $ x 1 0 Ê " $ x 1 Ê f(x) œ x. Then kf(x) 2k œ kx 2k œ 2 x 2 1 œ 1. That is, kf(x) 2k 1 "# no matter how small $ is taken when " $ x 1 Ê lim f(x) Á 2. xÄ1
(b) 0 x 1 $ Ê " x " $ Ê f(x) œ x 1. Then kf(x) 1k œ k(x 1) 1k œ kxk œ x 1. That is, kf(x) 1k 1 no matter how small $ is taken when " x " $ Ê lim f(x) Á 1. xÄ1
(c) $ x 1 ! Ê " $ x 1 Ê f(x) œ x. Then kf(x) 1.5k œ kx 1.5k œ 1.5 x 1.5 1 œ 0.5. Also, ! x 1 $ Ê 1 x " $ Ê f(x) œ x 1. Then kf(x) 1.5k œ k(x 1) 1.5k œ kx 0.5k œ x 0.5 " 0.5 œ 0.5. Thus, no matter how small $ is taken, there exists a value of x such that $ x 1 $ but kf(x) 1.5k "# Ê lim f(x) Á 1.5. xÄ1
58. (a) For 2 x 2 $ Ê h(x) œ 2 Ê kh(x) 4k œ 2. Thus for % 2, kh(x) 4k % whenever 2 x 2 $ no matter how small we choose $ 0 Ê lim h(x) Á 4. xÄ#
(b) For 2 x 2 $ Ê h(x) œ 2 Ê kh(x) 3k œ 1. Thus for % 1, kh(x) 3k % whenever 2 x 2 $ no matter how small we choose $ 0 Ê lim h(x) Á 3. xÄ#
(c) For 2 $ x 2 Ê h(x) œ x# so kh(x) 2k œ kx# 2k . No matter how small $ 0 is chosen, x# is close to 4 when x is near 2 and to the left on the real line Ê kx# 2k will be close to 2. Thus if % 1, kh(x) 2k % whenever 2 $ x 2 no mater how small we choose $ 0 Ê lim h(x) Á 2. xÄ#
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
62
Chapter 2 Limits and Continuity
59. (a) For 3 $ x 3 Ê f(x) 4.8 Ê kf(x) 4k 0.8. Thus for % 0.8, kf(x) 4k % whenever 3 $ x 3 no matter how small we choose $ 0 Ê lim f(x) Á 4. xÄ$
(b) For 3 x 3 $ Ê f(x) 3 Ê kf(x) 4.8k 1.8. Thus for % 1.8, kf(x) 4.8k % whenever 3 x 3 $ no matter how small we choose $ 0 Ê lim f(x) Á 4.8. xÄ$
(c) For 3 $ x 3 Ê f(x) 4.8 Ê kf(x) 3k 1.8. Again, for % 1.8, kf(x) 3k % whenever $ $ x 3 no matter how small we choose $ 0 Ê lim f(x) Á 3. xÄ$
60. (a) No matter how small we choose $ 0, for x near 1 satisfying " $ x " $ , the values of g(x) are near 1 Ê kg(x) 2k is near 1. Then, for % œ "# we have kg(x) 2k "# for some x satisfying " $ x " $ , or ! kx 1k $ Ê
lim g(x) Á 2.
x Ä 1
(b) Yes, lim g(x) œ 1 because from the graph we can find a $ ! such that kg(x) 1k % if ! kx (1)k $ . x Ä 1
61-66. Example CAS commands (values of del may vary for a specified eps): Maple: f := x -> (x^4-81)/(x-3);x0 := 3; plot( f(x), x=x0-1..x0+1, color=black, # (a) title="Section 2.3, #61(a)" ); L := limit( f(x), x=x0 ); # (b) epsilon := 0.2; # (c) plot( [f(x),L-epsilon,L+epsilon], x=x0-0.01..x0+0.01, color=black, linestyle=[1,3,3], title="Section 2.3, #61(c)" ); q := fsolve( abs( f(x)-L ) = epsilon, x=x0-1..x0+1 ); # (d) delta := abs(x0-q); plot( [f(x),L-epsilon,L+epsilon], x=x0-delta..x0+delta, color=black, title="Section 2.3, #61(d)" ); for eps in [0.1, 0.005, 0.001 ] do # (e) q := fsolve( abs( f(x)-L ) = eps, x=x0-1..x0+1 ); delta := abs(x0-q); head := sprintf("Section 2.3, #61(e)\n epsilon = %5f, delta = %5f\n", eps, delta ); print(plot( [f(x),L-eps,L+eps], x=x0-delta..x0+delta, color=black, linestyle=[1,3,3], title=head )); end do: Mathematica (assigned function and values for x0, eps and del may vary): Clear[f, x] y1: œ L eps; y2: œ L eps; x0 œ 1; f[x_]: œ (3x2 (7x 1)Sqrt[x] 5)/(x 1) Plot[f[x], {x, x0 0.2, x0 0.2}] L: œ Limit[f[x], x Ä x0] eps œ 0.1; del œ 0.2; Plot[{f[x], y1, y2},{x, x0 del, x0 del}, PlotRange Ä {L 2eps, L 2eps}]
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.4 One-Sided Limits 2.4 ONE-SIDED LIMITS 1. (a) True (e) True (i) False
(b) True (f) True (j) False
(c) False (g) False (k) True
(d) True (h) False (l) False
2. (a) True (e) True (i) True
(b) False (f) True (j) False
(c) False (g) True (k) True
(d) True (h) True
3. (a)
lim f(x) œ
x Ä #b
2 #
" œ #, lim c f(x) œ $ # œ " xÄ#
(b) No, lim f(x) does not exist because lim b f(x) Á lim c f(x) xÄ# xÄ# xÄ# (c) lim c f(x) œ 4# 1 œ 3, lim b f(x) œ 4# " œ $ xÄ%
xÄ%
(d) Yes, lim f(x) œ 3 because 3 œ lim c f(x) œ lim b f(x) xÄ% xÄ% xÄ% 4. (a)
lim f(x) œ
x Ä #b
2 #
œ 1, lim c f(x) œ $ # œ ", f(2) œ 2 xÄ#
(b) Yes, lim f(x) œ 1 because " œ lim b f(x) œ lim c f(x) xÄ# xÄ# xÄ# (c) lim c f(x) œ 3 (1) œ 4, lim b f(x) œ 3 (1) œ 4 x Ä "
x Ä "
(d) Yes, lim f(x) œ 4 because 4 œ x Ä "
lim
x Ä "c
f(x) œ
lim
x Ä "b
f(x)
5. (a) No, lim b f(x) does not exist since sin ˆ "x ‰ does not approach any single value as x approaches 0 xÄ! (b) lim c f(x) œ lim c 0 œ 0 xÄ!
(c)
xÄ!
lim f(x) does not exist because lim b f(x) does not exist xÄ! xÄ!
6. (a) Yes, lim b g(x) œ 0 by the sandwich theorem since Èx Ÿ g(x) Ÿ Èx when x 0 xÄ! (b) No, lim c g(x) does not exist since Èx is not defined for x 0 xÄ!
(c) No, lim g(x) does not exist since lim c g(x) does not exist xÄ! xÄ! 7. (aÑ
lim f(x) œ " œ lim b f(x) xÄ1 (c) Yes, lim f(x) œ 1 since the right-hand and left-hand (b)
x Ä 1c
xÄ1
limits exist and equal 1
8. (a)
(b)
lim f(x) œ 0 œ lim c f(x) xÄ1
x Ä 1b
(c) Yes, lim f(x) œ 0 since the right-hand and left-hand xÄ1
limits exist and equal 0
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
63
64
Chapter 2 Limits and Continuity
9. (a) domain: 0 Ÿ x Ÿ 2 range: 0 y Ÿ 1 and y œ 2 (b) xlim f(x) exists for c belonging to Äc (0ß 1) ("ß #) (c) x œ 2 (d) x œ 0
10. (a) domain: _ x _ range: " Ÿ y Ÿ 1 (b) xlim f(x) exists for c belonging to Äc (_ß 1) ("ß ") ("ß _) (c) none (d) none
11.
x Ä !Þ&c
lim
13.
x Ä #b
14.
x Ä 1c
15.
h Ä !b
lim
2 0.5 2 È3 É 3/2 É xx É 1 œ 0.5 1 œ 1/2 œ
lim
x Ä 1b
" 1 È0 œ ! É "1 É xx # œ # œ
5‰ ˆ x x 1 ‰ ˆ 2x ˆ 2 ‰ 2(2) 5 ˆ1‰ x# x œ 2 1 Š (2)# (2) ‹ œ (2) 2 œ 1
lim
ˆ x " 1 ‰ ˆ x x 6 ‰ ˆ 3 7 x ‰ œ ˆ 1 " 1 ‰ ˆ 1 1 6 ‰ ˆ 3 7 1 ‰ œ ˆ "# ‰ ˆ 71 ‰ ˆ 27 ‰ œ 1
lim
Èh# 4h 5 È5 h
œ lim b hÄ! 16.
12.
lim
h Ä !c
(b)
18. (a)
(b)
ah# 4h 5b 5
h ŠÈh# 4h 5 È5‹
È6 È5h# 11h 6 h
œ lim c hÄ! 17. (a)
œ lim b Š hÄ!
x Ä #c
lim
x Ä 1b
lim
x Ä 1c
œ lim c Š hÄ!
6 a5h# 11h 6b
lim
lim
œ lim b hÄ!
h ŠÈ6 È5h# 11h 6‹
x Ä #b
kx 2 k x 2
(x 3)
œ
kx 2 k x2
œ
lim
lim
x Ä #c
È2x (x 1) kx 1 k
È2x (x 1) kx 1 k
œ lim b xÄ1
h(5h 11)
h ŠÈ6 È5h# 11h 6‹
(x 3)
x Ä #b
œ
œ
04 È5 È5
œ
2 È5
È5h# 11h 6 È6 È5h# 11h 6 È ‹ Š È66 ‹ h È5h# 11h 6
x Ä #b
lim
h(h 4)
h ŠÈh# 4h 5 È5‹
œ lim c hÄ!
œ
(x 3)
Èh# 4h 5 È5 È # 4h 5 È5 ‹ Š Èhh# ‹ h 4h 5 È5
(x2) (x#)
(0 11) È6 È6
11 œ 2È 6
akx 2k œ ax 2b for x 2b
(x 3) œ a(2) 3b œ 1
(x 3) ’ (x(x#2) ) “
lim
œ
x Ä #c
akx 2k œ (x 2) for x 2b
(x 3)(1) œ (2 3) œ 1
È2x (x 1) (x 1)
akx 1k œ x 1 for x 1b
œ lim b È2x œ È2 xÄ1
œ lim c xÄ1
È2x (x 1) (x 1)
akx 1k œ (x 1) for x 1b
œ lim c È2x œ È2 xÄ1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.4 One-Sided Limits 19. (a)
) Ä $b
20. (a)
t Ä %b
Ú) Û )
lim
œ1
3 3
lim at ÚtÛb œ 4 4 œ 0
21. lim
sin È2) È 2)
22. lim
sin kt t
23. lim
sin 3y 4y
)Ä!
tÄ!
yÄ!
24.
œ
tan 2x x xÄ!
25. lim
2t
27. lim
xÄ!
)Ä!
œ lim c ˆ "3 † hÄ! sin 2x ‰ ˆ cos 2x x xÄ!
œ lim
œ 2 lim
t
sin t t Ä ! ˆ cos t ‰
x csc 2x cos 5x
œ
3h ‰ sin 3h
x x cos x
2 3
lim at ÚtÛb œ 4 3 œ 1
" ‰ cos 5x
xÄ!
œ
" 3
Œ
œ
" lim
)Ä!c
(where ) œ kt) (where ) œ 3y)
3 4
" 3
œ
sin ) )
"
‹ Š lim x Ä ! cos 2x xÄ!
œ Š #" lim
†1œ
2 sin 2x #x ‹
t
Ä!
" 3
(where ) œ 3h)
œ1†2œ2
t
"
‹ Š lim cos 5x ‹ x Ä ! sin 2x xÄ!
6x# cos x
œ lim ˆ sin xxcos x
œk†1œk
tÄ!
x Ä ! sin x sin 2x
x Ä ! sin x cos x
t Ä %c
œ
œ 2 Š lim cos t‹ Œ lim" sin t œ 2 † " † " œ 2
t cos t sin t
tÄ!
xÄ!
(b)
Ú) Û )
lim
3 sin ) 4 )lim Ä! )
œ
œ Š lim
sin 2x
x Ä ! x cos 2x
œ 2 lim
xÄ!
)Ä!
" " sin 3h 3 h lim Ä !c ˆ 3h ‰
œ
œ lim
œ lim ˆ sinx2x †
sin ) )
œ k lim
sin 3y 3 4 ylim Ä ! 3y
28. lim 6x# (cot x)(csc 2x) œ lim 29. lim
k sin ) )
œ lim
3 sin 3y " 4 ylim 3y Ä!
œ
h
t Ä ! tan t
k sin kt kt
tÄ!
) Ä $c
(where x œ È2))
œ1
sin x x
xÄ!
œ lim
lim h Ä !c sin 3h
26. lim
œ lim
(b)
2x
œ lim ˆ3 cos x †
x sin x
xÄ!
x cos x ‰ sin x cos x
œ lim ˆ sinx x † xÄ!
†
œ ˆ #" † 1‰ (1) œ
2x ‰ sin 2x
" ‰ cos x
" #
œ3†"†1œ3
lim
x
x Ä ! sin x
œ lim Š sin" x ‹ † lim ˆ cos" x ‰ lim Š sin" x ‹ œ (1)(1) 1 œ 2 xÄ!
30. lim
xÄ!
xÄ!
x
x# x sin x #x
1 cos ) ) Ä ! sin 2)
31. lim
œ lim
)Ä!
)Ä!
34. lim
sin (sin h) sin h sin )
) Ä ! sin 2)
36. lim
sin 5x
x Ä ! sin 4x
œ
œ lim
)Ä!
œ lim
)Ä!
sin ) )
sin ) )
)Ä!
"# (1) œ 0
1 cos2 ) a2sin ) cos )ba1 cos )b
œ lim
)Ä!
sin2 ) a2sin ) cos )ba1 cos )b
œ lim
xÄ!
xa1 c cos xb 9x2 sin2 3x 9x2
œ lim
1 c cos x 9x
2 x Ä ! ˆ sin3x3x ‰
œ
" lim ˆ 1 9 x
Ä!
cos x ‰ x
2 lim ˆ sin3x3x ‰
xÄ!
œ
" 9 a0 b 12
œ0
œ 1 since ) œ sin h Ä 0 as h Ä 0 2) ‰ #)
5x œ lim ˆ sin sin 4x †
4x 5x
)Ä!
œ lim
" #
œ 1 since ) œ 1 cos t Ä 0 as t Ä 0
sin ) œ lim ˆ sin 2) †
xÄ!
"# ˆ sinx x ‰‰ œ 0
œ0
0 a2ba2b
xa1 cos xb sin2 3x xÄ!
sin(1 cos t) 1cos t
x
a1 cos )ba1 cos )b a2sin ) cos )ba1 cos )b
œ lim
33. lim
35. lim
" #
xÄ!
œ lim
x x cos x sin2 3x xÄ!
hÄ!
œ lim ˆ #x
sin ) a2cos )ba1 cos )b
32. lim
tÄ!
xÄ!
œ
" # )lim Ä!
† 54 ‰ œ
ˆ sin) ) †
5 4 xlim Ä!
2) ‰ sin 2)
ˆ sin5x5x †
œ
" #
4x ‰ sin 4x
†1†1œ œ
5 4
" #
†1†1œ
5 4
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
65
66
Chapter 2 Limits and Continuity
37. lim ) cos ) œ 0 † 1 œ 0 )Ä!
38. lim sin ) cot 2) œ lim sin ) )Ä!
)Ä!
tan 3x
39. lim
x Ä ! sin 8x
œ
3 8 xlim Ä!
40. lim
yÄ!
œ
sin 3x œ lim ˆ cos 3x †
xÄ!
" ‰ sin 8x
œ lim sin ) )Ä!
œ lim
xÄ!
3 8
†1†1†1œ
sin 3y sin 4y cos 5y y cos 4y sin 5y
yÄ!
œ lim
) cot 4) 2 2 ) Ä ! sin ) cot 2)
42. lim
)Ä!
sin ) cos ) 3) 2 ) cos sin 3)
œ lim
)Ä!
2 lim 4) cos2 4) cos ) ) Ä ! cos 2) sin 4)
œ lim
cos 4) sin 4) 2 2) 2 sin ) cos sin2 2)
" sin 8x
cos 2)
) Ä ! 2 cos )
†
8x 3x
œ
1 2
† 83 ‰
3 8
yÄ!
sin ) sin 3)
2 ) Ä ! ) cos ) cos 3)
)
œ lim
sin 4y cos 5y 3†4†5y œ lim Š siny3y ‹ Š cos 4y ‹ Š sin 5y ‹ Š 3†4†5y ‹
cos 5y ˆ 3†4 ‰ lim Š sin3y3y ‹ Š sin4y4y ‹ Š sin5y5y ‹ Š cos 4y ‹ 5 yÄ!
tan ) 2 ) Ä ! ) cot 3)
cos 2) 2sin ) cos )
sin 3x œ lim ˆ cos 3x †
ˆ cos"3x ‰ ˆ sin3x3x ‰ ˆ sin8x8x ‰ œ
sin 3y cot 5y y cot 4y
41. lim
œ
cos 2) sin 2)
œ1†1†1†1†
œ
12 5
œ lim ˆ sin) ) ‰ˆ sin3)3) ‰ˆ cos ) 3cos 3) ‰ œ a1ba1bˆ 13†1 ‰ œ 3 )Ä!
) cos 4) sin2 2) 2 2 ) Ä ! sin ) cos 2) sin 4)
œ lim
12 5
) cos 4) a2sin ) cos )b2 2 2 ) Ä ! sin ) cos 2) sin 4)
œ lim
) cos 4) ˆ4sin2 ) cos2 )‰ 2 2 ) Ä ! sin ) cos 2) sin 4)
œ lim
4) cos ) 4) cos ) œ lim ˆ sin4)4) ‰Š coscos ‹ œ lim Š sin14) ‹Š coscos ‹ œ ˆ 11 ‰Š 11†12 ‹ œ 1 2 2) 2 2) 2
)Ä!
2
)Ä!
2
4)
43. Yes. If lim b f(x) œ L œ lim c f(x), then xlim f(x) œ L. If lim b f(x) Á lim c f(x), then xlim f(x) does not exist. Äa Äa xÄa xÄa xÄa xÄa 44. Since xlim f(x) œ L if and only if lim b f(x) œ L and lim c f(x) œ L, then xlim f(x) can be found by calculating Äc Äc xÄc xÄc lim b f(x). xÄc
45. If f is an odd function of x, then f(x) œ f(x). Given lim b f(x) œ 3, then lim c f(x) œ $. xÄ! xÄ! 46. If f is an even function of x, then f(x) œ f(x). Given lim c f(x) œ 7 then xÄ#
can be said about
lim
x Ä #c
lim
x Ä #b
f(x) œ 7. However, nothing
f(x) because we don't know lim b f(x). xÄ#
47. I œ (5ß 5 $ ) Ê 5 x & $ . Also, Èx 5 % Ê x 5 %# Ê x & %# . Choose $ œ %# Ê lim Èx 5 œ 0. x Ä &b
48. I œ (% $ ß %) Ê % $ x 4. Also, È% x % Ê % x %# Ê x % %# . Choose $ œ %# Ê lim È% x œ 0. x Ä %c
49. As x Ä 0 the number x is always negative. Thus, ¹ kxxk (1)¹ % Ê ¸ xx 1¸ % Ê 0 % which is always true independent of the value of x. Hence we can choose any $ 0 with $ x ! Ê
2 ¸ x 2 ¸ 50. Since x Ä # we have x 2 and kx 2k œ x 2. Then, ¹ kxx 2 k " ¹ œ x 2 " % Ê 0 %
which is always true so long as x #. Hence we can choose any $ !, and thus # x # $ 2 Ê ¹ kxx 2k "¹ % . Thus,
x 2
lim x Ä #b kx2k
x
lim x Ä ! c kx k
œ 1.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
œ 1.
Section 2.5 Continuity 51. (a) (b)
lim
x Ä %!!b
67
ÚxÛ œ 400. Just observe that if 400 x 401, then ÚxÛ œ 400. Thus if we choose $ œ ", we have for any
number % ! that 400 x 400 $ Ê lÚxÛ 400l œ l400 400l œ ! %. lim c ÚxÛ œ 399. Just observe that if 399 x 400 then ÚxÛ œ 399. Thus if we choose $ œ ", we have for any
x Ä %!!
number % ! that 400 $ x 400 Ê lÚxÛ 399l œ l399 399l œ ! %. (c) Since lim b ÚxÛ Á lim c ÚxÛ we conclude that lim ÚxÛ does not exist. x Ä %!!
x Ä %!!
52. (a)
x Ä %!!
lim f(x) œ lim b Èx œ È0 œ 0; ¸Èx 0¸ % Ê % Èx % Ê ! x %# for x positive. Choose $ œ %# xÄ! Ê lim b f(x) œ 0.
x Ä !b
xÄ!
(b)
lim f(x) œ lim c x# sin ˆ x" ‰ œ 0 by the sandwich theorem since x# Ÿ x# sin ˆ x" ‰ Ÿ x# for all x Á 0. x Ä !c xÄ! Since kx# 0k œ kx# 0k œ x# % whenever kxk È%, we choose $ œ È% and obtain ¸x# sin ˆ "x ‰ 0¸ %
if $ x 0. (c) The function f has limit 0 at x! œ 0 since both the right-hand and left-hand limits exist and equal 0. 2.5 CONTINUITY 1. No, discontinuous at x œ 2, not defined at x œ 2 2. No, discontinuous at x œ 3, " œ lim c g(x) Á g(3) œ 1.5 xÄ$ 3. Continuous on [1ß 3] 4. No, discontinuous at x œ 1, 1.5 œ lim c k(x) Á lim b k(x) œ ! xÄ" xÄ" 5. (a) Yes
(b) Yes,
(c) Yes
(d) Yes
6. (a) Yes, f(1) œ 1
lim
x Ä "b
f(x) œ 0
(b) Yes, lim f(x) œ 2 xÄ1
(c) No
(d) No
7. (a) No
(b) No
8. ["ß !) (!ß ") ("ß #) (#ß $) 9. f(2) œ 0, since lim c f(x) œ 2(2) 4 œ 0 œ lim b f(x) xÄ# xÄ# 10. f(1) should be changed to 2 œ lim f(x) xÄ1
11. Nonremovable discontinuity at x œ 1 because lim f(x) fails to exist ( limc f(x) œ 1 and lim b f(x) œ 0). xÄ" xÄ1 xÄ"
Removable discontinuity at x œ 0 by assigning the number lim f(x) œ 0 to be the value of f(0) rather than f(0) œ 1. xÄ!
12. Nonremovable discontinuity at x œ 1 because lim f(x) fails to exist ( lim c f(x) œ 2 and lim b f(x) œ 1). xÄ" xÄ1 xÄ" Removable discontinuity at x œ 2 by assigning the number lim f(x) œ 1 to be the value of f(2) rather than f(2) œ 2. xÄ#
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
68
Chapter 2 Limits and Continuity
13. Discontinuous only when x 2 œ 0 Ê x œ 2
14. Discontinuous only when (x 2)# œ 0 Ê x œ 2
15. Discontinuous only when x# %x $ œ ! Ê (x 3)(x 1) œ 0 Ê x œ 3 or x œ 1 16. Discontinuous only when x# 3x 10 œ 0 Ê (x 5)(x 2) œ 0 Ê x œ 5 or x œ 2 17. Continuous everywhere. ( kx 1k sin x defined for all x; limits exist and are equal to function values.) 18. Continuous everywhere. ( kxk " Á 0 for all x; limits exist and are equal to function values.) 19. Discontinuous only at x œ 0 20. Discontinuous at odd integer multiples of 1# , i.e., x = (2n ") 1# , n an integer, but continuous at all other x. 21. Discontinuous when 2x is an integer multiple of 1, i.e., 2x œ n1, n an integer Ê x œ
n1 # ,
n an integer, but
continuous at all other x. 22. Discontinuous when
1x #
is an odd integer multiple of 1# , i.e.,
1x #
œ (2n 1) 1# , n an integer Ê x œ 2n 1, n an
integer (i.e., x is an odd integer). Continuous everywhere else. 23. Discontinuous at odd integer multiples of 1# , i.e., x = (2n 1) 1# , n an integer, but continuous at all other x. 24. Continuous everywhere since x% 1 1 and " Ÿ sin x Ÿ 1 Ê 0 Ÿ sin# x Ÿ 1 Ê 1 sin# x 1; limits exist and are equal to the function values. 25. Discontinuous when 2x 3 0 or x 3# Ê continuous on the interval 3# ß _‰ . 26. Discontinuous when 3x 1 0 or x
" 3
Ê continuous on the interval 3" ß _‰ .
27. Continuous everywhere: (2x 1)"Î$ is defined for all x; limits exist and are equal to function values. 28. Continuous everywhere: (2 x)"Î& is defined for all x; limits exist and are equal to function values. 29. Continuous everywhere since lim xÄ3 30. Discontinuous at x œ 2 since
x2 x 6 x3
œ lim xÄ3
ax 3bax 2b x3
œ lim ax 2b œ 5 œ ga3b xÄ3
lim faxb does not exist while fa2b œ 4. x Ä 2
31. xlim sin (x sin x) œ sin (1 sin 1) œ sin (1 0) œ sin 1 œ 0, and function continuous at x œ 1. Ä1 32. lim sin ˆ 1# cos (tan t)‰ œ sin ˆ 1# cos (tan (0))‰ œ sin ˆ 1# cos (0)‰ œ sin ˆ 1# ‰ œ 1, and function continuous at t œ !. tÄ!
33. lim sec ay sec# y tan# y 1b œ lim sec ay sec# y sec# yb œ lim sec a(y 1) sec# yb œ sec a(" ") sec# 1b yÄ1
yÄ1
yÄ1
œ sec 0 œ 1, and function continuous at y œ ". 34. lim tan 14 cos ˆsin x"Î$ ‰‘ œ tan 14 cos (sin(0))‘ œ tan ˆ 14 cos (0)‰ œ tan ˆ 14 ‰ œ 1, and function continuous at x œ !. xÄ!
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.5 Continuity 35. lim cos ’ È19 13 sec 2t “ œ cos ’ È19 13 sec 0 “ œ cos tÄ!
1 È16
œ cos
1 4
œ
È2 # ,
and function continuous at t œ !.
36. lim1 Écsc# x 5È3 tan x œ Écsc# ˆ 16 ‰ 5È3 tan ˆ 16 ‰ œ Ê4 5È3 Š È"3 ‹ œ È9 œ 3, and function continuous at xÄ
'
x œ 1' . 37. g(x) œ
x# 9 x3
(x 3)(x 3) (x 3)
œ
38. h(t) œ
t# 3t 10 t#
39. f(s) œ
s$ " s# 1
40. g(x) œ
œ
œ
œ x 3, x Á 3 Ê g(3) œ lim (x 3) œ 6 xÄ$
(t 5)(t 2) t#
as# s 1b (s 1) (s 1)(s 1)
x# 16 x# 3x 4
œ
œ t 5, t Á # Ê h(2) œ lim (t 5) œ 7 tÄ#
s# s " s1 ,
œ
(x 4)(x 4) (x 4)(x 1)
œ
x4 x1
s Á 1 Ê f(1) œ lim Š s sÄ1
#
s1 s1 ‹
4‰ , x Á 4 Ê g(4) œ lim ˆ xx 1 œ
xÄ%
œ
3 #
8 5
41. As defined, lim c f(x) œ (3)# 1 œ 8 and lim b (2a)(3) œ 6a. For f(x) to be continuous we must have xÄ$ xÄ$ 6a œ 8 Ê a œ 43 .
42. As defined,
lim
x Ä #c
g(x) œ 2 and
4b œ 2 Ê b œ "# .
lim
x Ä #b
g(x) œ b(2)# œ 4b. For g(x) to be continuous we must have
43. As defined, lim c f(x) œ 12 and lim b f(x) œ a# a2b 2a œ 2a# 2a. For f(x) to be continuous we must have xÄ# xÄ# 12 œ 2a# 2a Ê a œ 3 or a œ 2. 44. As defined, lim c g(x) œ b b1
xÄ0
0b b1
œ
b b1
œ b Ê b œ 0 or b œ 2.
45. As defined,
lim
x Ä 1 c
f(x) œ 2 and
and lim b g(x) œ a0b2 b œ b. For g(x) to be continuous we must have xÄ0
lim
x Ä 1 b
f(x) œ aa1b b œ a b, and
lim f(x) œ aa1b b œ a b and
x Ä 1c
lim f(x) œ 3. For f(x) to be continuous we must have 2 œ a b and a b œ 3 Ê a œ
x Ä 1b
5 #
and b œ "# .
46. As defined, lim c g(x) œ aa0b 2b œ 2b and lim b g(x) œ a0b2 3a b œ 3a b, and xÄ0 xÄ0 lim g(x) œ a2b2 3a b œ 4 3a b and lim b g(x) œ 3a2b 5 œ 1. For g(x) to be continuous we must xÄ0
x Ä 2c
have 2b œ 3a b and 4 3a b œ 1 Ê a œ 3# and b œ 3# .
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
69
70
Chapter 2 Limits and Continuity
47. The function can be extended: f(0) ¸ 2.3.
48. The function cannot be extended to be continuous at x œ 0. If f(0) ¸ 2.3, it will be continuous from the right. Or if f(0) ¸ 2.3, it will be continuous from the left.
49. The function cannot be extended to be continuous at x œ 0. If f(0) œ 1, it will be continuous from the right. Or if f(0) œ 1, it will be continuous from the left.
50. The function can be extended: f(0) ¸ 7.39.
51. f(x) is continuous on [!ß "] and f(0) 0, f(1) 0 Ê by the Intermediate Value Theorem f(x) takes on every value between f(0) and f(1) Ê the equation f(x) œ 0 has at least one solution between x œ 0 and x œ 1.
52. cos x œ x Ê (cos x) x œ 0. If x œ 1# , cos ˆ 1# ‰ ˆ 1# ‰ 0. If x œ 1# , cos ˆ 1# ‰ for some x between
1 #
and
1 #
1 #
0. Thus cos x x œ 0
according to the Intermediate Value Theorem, since the function cos x x is continuous.
53. Let f(x) œ x$ 15x 1, which is continuous on [4ß 4]. Then f(4) œ 3, f(1) œ 15, f(1) œ 13, and f(4) œ 5. By the Intermediate Value Theorem, f(x) œ 0 for some x in each of the intervals % x 1, " x 1, and " x 4. That is, x$ 15x 1 œ 0 has three solutions in [%ß 4]. Since a polynomial of degree 3 can have at most 3 solutions, these are the only solutions. 54. Without loss of generality, assume that a b. Then F(x) œ (x a)# (x b)# x is continuous for all values of x, so it is continuous on the interval [aß b]. Moreover F(a) œ a and F(b) œ b. By the Intermediate Value Theorem, since a a # b b, there is a number c between a and b such that F(x) œ a # b .
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.5 Continuity 55. Answers may vary. Note that f is continuous for every value of x. (a) f(0) œ 10, f(1) œ 1$ 8(1) 10 œ 3. Since $ 1 10, by the Intermediate Value Theorem, there exists a c so that ! c 1 and f(c) œ 1. (b) f(0) œ 10, f(4) œ (4)$ 8(4) 10 œ 22. Since 22 È3 10, by the Intermediate Value Theorem, there exists a c so that 4 c 0 and f(c) œ È3. (c) f(0) œ 10, f(1000) œ (1000)$ 8(1000) 10 œ 999,992,010. Since 10 5,000,000 999,992,010, by the Intermediate Value Theorem, there exists a c so that ! c 1000 and f(c) œ 5,000,000.
56. All five statements ask for the same information because of the intermediate value property of continuous functions. (a) A root of f(x) œ x$ 3x 1 is a point c where f(c) œ 0. (b) The points where y œ x$ crosses y œ 3x 1 have the same y-coordinate, or y œ x$ œ 3x 1 Ê f(x) œ x$ 3x 1 œ 0. (c) x$ 3x œ 1 Ê x$ 3x 1 œ 0. The solutions to the equation are the roots of f(x) œ x$ 3x 1. (d) The points where y œ x$ 3x crosses y œ 1 have common y-coordinates, or y œ x$ 3x œ 1 Ê f(x) œ x$ 3x 1 œ !. (e) The solutions of x$ 3x 1 œ 0 are those points where f(x) œ x$ 3x 1 has value 0. 57. Answers may vary. For example, f(x) œ
sin (x 2) x2
is discontinuous at x œ 2 because it is not defined there.
However, the discontinuity can be removed because f has a limit (namely 1) as x Ä 2. 58. Answers may vary. For example, g(x) œ
" x1
has a discontinuity at x œ 1 because lim g(x) does not exist. x Ä "
Š lim c g(x) œ _ and lim b g(x) œ _.‹ x Ä " x Ä " 59. (a) Suppose x! is rational Ê f(x! ) œ 1. Choose % œ "# . For any $ 0 there is an irrational number x (actually infinitely many) in the interval (x! $ ß x! $ ) Ê f(x) œ 0. Then 0 kx x! k $ but kf(x) f(x! )k œ 1 "# œ %, so x lim f(x) fails to exist Ê f is discontinuous at x! rational. Äx !
On the other hand, x! irrational Ê f(x! ) œ 0 and there is a rational number x in (x! $ ß x! $ ) Ê f(x) œ 1. Again x lim f(x) fails to exist Ê f is discontinuous at x! irrational. That is, f is discontinuous at Äx !
every point. (b) f is neither right-continuous nor left-continuous at any point x! because in every interval (x! $ ß x! ) or (x! ß x! $ ) there exist both rational and irrational real numbers. Thus neither limits lim f(x) and x Ä x!
lim f(x) exist by the same arguments used in part (a).
x Ä x !
60. Yes. Both f(x) œ x and g(x) œ x g ˆ "# ‰
œ0 Ê
f(x) g(x)
" #
are continuous on [!ß "]. However
is discontinuous at x œ
f(x) g(x)
is undefined at x œ
" #
since
" #.
61. No. For instance, if f(x) œ 0, g(x) œ ÜxÝ, then h(x) œ 0 aÜxÝb œ 0 is continuous at x œ 0 and g(x) is not. 62. Let f(x) œ œ
" x1
" (x 1) 1
œ
and g(x) œ x 1. Both functions are continuous at x œ 0. The composition f ‰ g œ f(g(x)) " x
is discontinuous at x œ 0, since it is not defined there. Theorem 10 requires that f(x) be
continuous at g(0), which is not the case here since g(0) œ 1 and f is undefined at 1. 63. Yes, because of the Intermediate Value Theorem. If f(a) and f(b) did have different signs then f would have to equal zero at some point between a and b since f is continuous on [aß b].
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
71
72
Chapter 2 Limits and Continuity
64. Let f(x) be the new position of point x and let d(x) œ f(x) x. The displacement function d is negative if x is the left-hand point of the rubber band and positive if x is the right-hand point of the rubber band. By the Intermediate Value Theorem, d(x) œ 0 for some point in between. That is, f(x) œ x for some point x, which is then in its original position. 65. If f(0) œ 0 or f(1) œ 1, we are done (i.e., c œ 0 or c œ 1 in those cases). Then let f(0) œ a 0 and f(1) œ b 1 because 0 Ÿ f(x) Ÿ 1. Define g(x) œ f(x) x Ê g is continuous on [0ß 1]. Moreover, g(0) œ f(0) 0 œ a 0 and g(1) œ f(1) 1 œ b 1 0 Ê by the Intermediate Value Theorem there is a number c in (!ß ") such that g(c) œ 0 Ê f(c) c œ 0 or f(c) œ c. 66. Let % œ
kf(c)k #
0. Since f is continuous at x œ c there is a $ 0 such that kx ck $ Ê kf(x) f(c)k %
Ê f(c) % f(x) f(c) %. If f(c) 0, then % œ "# f(c) Ê " #
" #
If f(c) 0, then % œ f(c) Ê
f(c) f(x) 3 #
3 #
f(c) f(x)
f(c) Ê f(x) 0 on the interval (c $ ß c $ ). " #
f(c) Ê f(x) 0 on the interval (c $ ß c $ ).
67. By Exercises 52 in Section 2.3, we have xlim faxb œ L Í lim fac hb œ L. Äc hÄ0
Thus, faxb is continuous at x œ c Í xlim faxb œ facb Í lim fac hb œ facb. Äc hÄ0
68. By Exercise 67, it suffices to show that lim sinac hb œ sin c and lim cosac hb œ cos c. hÄ0
hÄ0
Now lim sinac hb œ lim asin cbacos hb acos cbasin hb‘ œ asin cbŠ lim cos h‹ acos cbŠ lim sin h‹ hÄ0
hÄ0
hÄ0
hÄ0
By Example 11 Section 2.2, lim cos h œ " and lim sin h œ !. So lim sinac hb œ sin c and thus faxb œ sin x is hÄ0
continuous at x œ c. Similarly,
hÄ0
hÄ0
lim cosac hb œ lim acos cbacos hb asin cbasin hb‘ œ acos cbŠ lim cos h‹ asin cbŠ lim sin h‹ œ cos c.
hÄ0
hÄ0
Thus, gaxb œ cos x is continuous at x œ c.
hÄ0
69. x ¸ 1.8794, 1.5321, 0.3473
70. x ¸ 1.4516, 0.8547, 0.4030
71. x ¸ 1.7549
72. x ¸ 1.5596
73. x ¸ 3.5156
74. x ¸ 3.9058, 3.8392, 0.0667
75. x ¸ 0.7391
76. x ¸ 1.8955, 0, 1.8955
hÄ0
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.6 Limits Involving Infinity; Asymptotes of Graphs 2.6 LIMITS INVOLVING INFINITY; ASMYPTOTES OF GRAPHS 1. (a) (c) (e) (g)
lim f(x) œ 0
(b)
xÄ2
lim
x Ä 3 c
f(x) œ 2
lim
x Ä 3 b
f(x) œ 2
(d) lim f(x) œ does not exist xÄ3
lim b f(x) œ 1
(f)
lim f(x) œ does not exist
(h) x lim f(x) œ 1 Ä_
xÄ0 xÄ0
lim f(x) œ _
x Ä 0c
(i) x Ä lim f(x) œ 0 _ 2. (a) (c)
lim f(x) œ 2
(b)
lim f(x) œ 1
(d) lim f(x) œ does not exist
xÄ4
x Ä 2c
xÄ2
lim f(x) œ _ x Ä 3 b (g) lim f(x) œ _ (e)
x Ä 3
(i)
lim f(x) œ 3
x Ä 2b
lim f(x) œ _
(f)
x Ä 3 c
lim
(h)
x Ä 0b
(k) x lim f(x) œ 0 Ä_
lim f(x) œ _
lim f(x) œ does not exist
(j)
x Ä 0c
xÄ0
(l) x Ä lim f(x) œ 1 _
Note: In these exercises we use the result
"
lim mÎn xÄ „_ x
Theorem 8 and the power rule in Theorem 1:
lim
xÄ „_
œ 0 whenever
ˆ xm"În ‰ œ
lim
(b) 3
4. (a) 1
(b) 1
5. (a)
" #
(b)
" #
6. (a)
" 8
(b)
" 8
7. (a) 53
(b)
10. 3") Ÿ 11.
lim
tÄ_
12. r Ä lim_
0. This result follows immediately from ˆ x" ‰mÎn œ Š
"
lim ‹ xÄ „_ x
mÎn
(b) 53
3 4
9. "x Ÿ
m n
xÄ „_
3. (a) 3
8. (a)
f(x) œ _
sin 2x x
Ÿ
" x
cos ) 3)
Ÿ
" 3)
2 t sin t t cos t
Ê x lim Ä_ Ê
13. (a) x lim Ä_
2x 3 5x 7
lim
) Ä _
œ lim
2 t
tÄ_
r sin r 2r 7 5 sin r
sin 2x x
œrÄ lim_
œ x lim Ä_
œ 0 by the Sandwich Theorem
cos ) 3)
œ 0 by the Sandwich Theorem
1 ˆ sint t ‰ 1 ˆ cost t ‰
œ
1 ˆ sinr r ‰ 2 7r 5 ˆ sinr r ‰ 2 3x 5 7x
3 4
œ
2 5
010 10
œ 1
œrÄ lim_
10 200
œ
(b)
" #
2 5
(same process as part (a))
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
œ 0mÎn œ 0.
73
74
Chapter 2 Limits and Continuity 2 Š x7$ ‹
$
2x 7 14. (a) x lim œ x lim Ä _ x$ x# x 7 Ä_ (b) 2 (same process as part (a)) " x
x"#
15. (a) x lim Ä_
x1 x# 3
œ x lim Ä_
1 x3#
16. (a) x lim Ä_
3x 7 x# 2
œ x lim Ä_
1 x2#
17. (a) x lim Ä_
7x$ x$ 3x# 6x
18. (a) x lim Ä_
x$
20. (a) x lim Ä_ 9 #
2x%
x7#
œ x lim Ä_
œ x lim Ä_
10x& x% 31 x'
19. (a) x lim Ä_
(b)
" 4x 1
3 x
œ2
œ0
(b) 0 (same process as part (a))
œ0
(b) 0 (same process as part (a)) œ(
7 1 3x x6# " x$ 4 x"$ x#
1
œ x lim Ä_
2
(b) 7 (same process as part (a))
œ!
x"# x31' 1
10 x
œ x lim Ä_
9x% x 5x# x 6
1 "x x"# x7$
(b) 0 (same process as part (a))
œ0
(b) 0 (same process as part (a))
9 x"$
5 x#
x"$ x6%
œ
9 #
(same process as part (a)) 2x$ 2x 3 3x$ 3x# 5x
21. (a) x lim Ä_
2 x2# x3$
œ x lim Ä_
œ 23
3 3x x5#
(b) 23 (same process as part (a)) x % x% 7x$ 7x# 9
22. (a) x lim Ä_
" 1 7x x7# x9%
œ x lim Ä_
œ 1
(b) 1 (same process as part (a)) 8
8
3
3
3 x2 x2 É 8x 23. x lim œ Êx lim œ É 82 00 œ È4 œ 2 2x2 x œ x lim Ä_ Ä _ Ê 2 1x Ä _ 2 1x 2
24. x Ä lim Šx x1‹ _ 8x2 3 2
1 Î3
œxÄ lim _Œ
5
1
" 1x x12 8
x
3 x2
1 Î3
œ Œx Ä lim _
5
1
" 1x x12 8
3 x2
5
x
1 Î3
œ ˆ " 8 0 0 0 ‰
1 Î3
œ ˆ "8 ‰
1 Î3
œ
x2 x2 ‰ œ_ 25. x Ä lim lim œ Œx Ä lim œ ˆ 01_ Š 1x ‹ œ x Ä 0 _ x2 7x _Œ 1 7x _ 1 7x 3
1
5
1
5
5
x x x2 x2 É x 5x œ x lim 26. x lim œ Êx lim œ É 1 0 0 0 0 œ È0 œ 0 Ä _ x3 x 2 Ä _Ê 1 x12 x23 Ä _ 1 x12 x23 2
27. x lim Ä_
2Èx xc" 3x 7
29. x Ä lim _
30. x lim Ä_
œ x lim Ä_
3 xÈ 5 x È 3 xÈ 5 x È
x "x % x #x $
Š
œxÄ lim _
œ x lim Ä_
2 ‹ Š x"# ‹ x"Î# 3 7x
œ0
1 xÐ"Î&Ñ Ð"Î$Ñ 1 xÐ"Î&Ñ Ð"Î$Ñ
x x"# 1 x"
œxÄ lim _
28. x lim Ä_ " ‹ 1 Š #Î"& x
" ‹ 1 Š #Î"&
2 Èx 2 Èx
œ x lim Ä_
2 ‹" x"Î# 2 Š "Î# ‹1 x
Š
œ 1
œ1
x
œ_
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
" #
Section 2.6 Limits Involving Infinity; Asymptotes of Graphs 2x&Î$ x"Î$ 7 x)Î& 3x Èx
31. x lim Ä_
3 x 5x 3 È 2x x#Î$ 4
32. x Ä lim _ 33. x lim Ä_
È x2 1 x1
34. x Ä lim _
œ x lim Ä_ œxÄ lim _
œ x lim Ä_
È x2 1 x1
1
" x#Î$
2
È x 2 1 ÎÈ x 2 a x 1 b ÎÈ x 2
œxÄ lim _
" 7 x"*Î"& x)Î& 3 " x$Î& x""Î"!
2x"Î"&
5 3x " x"Î$
È
3 œ 5# È x
4x
œ x lim Ä_
È x 2 1 ÎÈ x 2 a x 1 bÎ È x 2
œ_
È a x 2 1 bÎx 2 ax 1bÎx
œ x lim Ä_
È 1 1 Îx 2 a1 1 Îx b
È a x 2 1 bÎ x 2
È1 0 a1 0 b
œ
È 1 1 Îx 2
œxÄ lim œ x lim œ _ ax 1bÎaxb Ä _ a 1 1 Î x b
œ1
È1 0 a1 0b
a x 3 bÎ x a x 3 bÎ x a1 3 Îx b x3 35. x lim œ x lim œ x lim œ x lim œ Ä _ È4x2 25 Ä _ È4x2 25ÎÈx2 Ä _ Èa4x2 25bÎx2 Ä _ È4 25Îx2 ˆ4 3x3 ‰ÎÈx6
4 3x 36. x Ä lim œxÄ lim œxÄ lim _ Èx6 9 _ Èx6 9ÎÈx6 _ 3
"
œ_
37.
lim x Ä !b 3x
39.
lim x Ä #c x 2
41.
lim x Ä )b x8
3
2x
4
43. lim
# x Ä ( (x7)
œ _ œ _ œ_
lim "Î$ x Ä !b 3x
46. (a)
lim "Î& x Ä !b x 4
47. lim
#Î& xÄ! x
49.
51. 52.
lim
x Ä ˆ 1# ‰
œ lim
4
# x Ä ! ax"Î& b
œ x lim Ä_
ˆ 4 Îx 3 3‰ È 1 9 Îx 6
Š positive positive ‹
40.
lim x Ä $b x 3
Š negative positive ‹
42.
lim x Ä &c 2x10
positive Š positive ‹
44. lim
œ_
"
3x
"
# x Ä ! x (x1)
2
(b)
lim "Î$ x Ä !c 3x
(b)
lim "Î& x Ä !c x
48. lim
"
#Î$ xÄ! x
tan x œ _
50.
œ3
œ_
positive Š negative ‹
2
a0 3 b È1 0
" #
positive Š negative ‹
lim x Ä !c 2x
5
œ
œ
œ _
38.
œ_
2
ˆ4 3x3 ‰Îˆx3 ‰ Èax6 9bÎx6
positive Š positive ‹
œ_
2
45. (a)
a1 0 b È4 0
2
œ 1
œ_
Š negative negative ‹
œ _
negative Š positive †positive ‹
œ _ œ _
œ lim
"
# x Ä ! ax"Î$ b
œ_
lim sec x œ _
x Ä ˆ #1 ‰
lim (1 csc )) œ _
)Ä!
lim (2 cot )) œ _ and lim c (2 cot )) œ _, so the limit does not exist )Ä!
) Ä !b
"
œ lim b xÄ#
" (x2)(x2)
œ_
Š positive"†positive ‹
"
œ lim c xÄ#
" (x2)(x2)
œ _
Š positive†"negative ‹
53. (a)
lim # x Ä # b x 4
(b)
lim # x Ä # c x 4
(c)
lim # x Ä #b x 4
(d)
lim # x Ä #c x 4
"
œ
lim x Ä #b (x2)(x2)
"
œ _
Š positive†"negative ‹
"
œ
lim x Ä #c (x2)(x2)
"
œ_
Š negative"†negative ‹
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
75
76
Chapter 2 Limits and Continuity
54. (a)
lim # x Ä "b x 1
(b)
lim # x Ä "c x 1
(c)
lim # x Ä "b x 1
(d)
lim # x Ä "c x 1
x
œ lim b xÄ"
x (x1)(x1)
œ_
positive Š positive †positive ‹
x
œ lim c xÄ"
x (x1)(x1)
œ _
positive Š positive †negative ‹
x
œ
lim x Ä "b (x1)(x1)
x
œ_
negative Š positive †negative ‹
x
œ
lim x Ä "c (x1)(x1)
x
œ _
negative Š negative †negative ‹
55. (a)
lim x Ä !b #
x#
" x
œ 0 lim b xÄ!
" x
œ _
" Š negative ‹
(b)
lim x Ä !c #
x#
" x
œ 0 lim c xÄ!
" x
œ_
" Š positive ‹
(c)
lim # x Ä $È2
(d)
lim x Ä 1 #
56. (a)
x#
x#
lim x Ä #b
" x
" x
œ
x# 1 2x 4 x# 1
2#Î$ #
œ
" #
(d)
lim x Ä !c 2x 4
œ
(b) (c) (d) (e) 58. (a)
x# 3x 2 x$ 2x#
lim b
x# 3x 2 x$ 2x#
lim
xÄ#
#
x 3x 2 x$ 2x# x 3x 2 x$ 2x#
lim
œ lim c xÄ#
lim x Ä #b
(c)
x Ä 0c
(d)
x Ä "b
(e)
lim x Ä !b x(x #)
x# 1 2x 4
lim x Ä #c
œ _
positive Š negative ‹
œ0
(x 2)(x 1) x# (x 2)
œ _
(x 2)(x 1) x# (x 2)
œ lim b xÄ#
(x 2)(x 1) x# (x 2)
œ lim c xÄ#
œ lim
œ lim
(x 2)(x 1) x# (x 2)
œ _
xÄ!
lim
x# 3x 2 x$ 4x
lim
x# 3x 2 x$ 4x x"
2†0 #4
(x 2)(x 1) x# (x 2)
xÄ#
œ lim b xÄ#
x# 3x 2 x$ 4x
(b)
œ
œ lim
x# 3x 2 x$ 4x
lim
x Ä #b
and
œ lim b xÄ#
x 3x 2 x$ 2x#
#
xÄ!
œ lim b xÄ!
#
lim
x Ä #c
(x 1)(x 1) 2x 4
(b)
" 4
lim b
xÄ#
3 #
Š positive positive ‹
œ lim b xÄ"
xÄ!
œ 2"Î$ 2"Î$ œ 0
œ_
lim x Ä "b 2x 4
57. (a)
" #"Î$
ˆ "1 ‰ œ
(c)
x# 1
œ
xÄ#
(x 2)(x ") x(x #)(x 2)
(x 2)(x ")
œ lim c xÄ! œ lim b xÄ"
(x 2)(x ") x(x #)(x 2) (x 2)(x ") x(x #)(x 2)
œ
x1 x#
œ
" 4
,xÁ2
x1 x#
œ
" 4
,xÁ2
x1 x#
œ
" 4
,xÁ2 †negative Š negative positive†negative ‹
œ lim b xÄ#
lim x Ä #b x(x #)(x 2)
†negative Š negative positive†negative ‹
(x 1) x(x #)
œ
(x 1)
lim x Ä #b x(x #)
œ lim c xÄ! œ lim b xÄ"
œ_
(x 1) x(x #)
œ
negative Š positive †positive ‹
x"
negative Š negative †positive ‹
œ_
œ
" 8
œ_
(x 1) x(x #)
œ _
lim x Ä !c x(x #)
" #(4)
0 (1)(3)
negative Š negative †positive ‹ negative Š negative †positive ‹
œ0
so the function has no limit as x Ä 0. lim 2
59. (a)
t Ä !b
60. (a)
t Ä !b
61. (a)
x Ä !b
(c)
x Ä "b
3 ‘ t"Î$
œ _
" lim t$Î& 7‘ œ _
lim
2
lim
lim
" ’ x#Î$
2 “ (x 1)#Î$
œ_
lim
" ’ x#Î$
2 “ (x 1)#Î$
œ_
(b)
t Ä !c
(b)
t Ä !c
lim
" ’ x#Î$
2 “ (x 1)#Î$
œ_
(b)
x Ä !c
lim
" ’ x#Î$
2 “ (x 1)#Î$
œ_
(d)
x Ä "c
" t$Î&
3 ‘ t"Î$
œ_
7‘ œ _
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 2.6 Limits Involving Infinity; Asymptotes of Graphs lim
" ’ x"Î$
1 “ (x 1)%Î$
œ_
(b)
x Ä !c
lim
" ’ x"Î$
1 “ (x 1)%Î$
œ _
(d)
x Ä "c
62. (a)
x Ä !b
(c)
x Ä "b
lim
" ’ x"Î$
1 “ (x 1)%Î$
œ _
lim
" ’ x"Î$
1 “ (x 1)%Î$
œ _
63. y œ
" x1
64. y œ
" x1
65. y œ
" #x 4
66. y œ
3 x3
67. y œ
x3 x2
68. y œ
2x x1
œ1
" x#
69. Here is one possibility.
œ#
2 x1
70. Here is one possibility.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
77
78
Chapter 2 Limits and Continuity
71. Here is one possibility.
72. Here is one possibility.
73. Here is one possibility.
74. Here is one possibility.
75. Here is one possibility.
76. Here is one possibility.
77. Yes. If x lim Ä_
f(x) g(x)
œ 2 then the ratio of the polynomials' leading coefficients is 2, so x Ä lim _
f(x) g(x)
œ 2 as well.
78. Yes, it can have a horizontal or oblique asymptote. 79. At most 1 horizontal asymptote: If x lim Ä_ f(x) lim x Ä _ g(x)
f(x) g(x)
œ L, then the ratio of the polynomials' leading coefficients is L, so
œ L as well.
Èx 9 Èx 4 80. x lim Š Èx 9 Èx 4‹ œ x lim ’Èx 9 Èx 4“ † ’ Èx 9 Èx 4 “ œ x lim Ä_ Ä_ Ä_ 5 Èx 5 0 œ x lim œ x lim œ 11 œ 0 9 4 Ä _ Èx 9 Èx 4 Ä_
ax 9 b a x 4 b Èx 9 Èx 4
É1 x É1 x
È 2 È 2 81. x lim Š Èx2 25 Èx2 "‹ œ x lim ’Èx2 25 Èx2 "“ † ’ Èx2 25 Èx2 " “ œ x lim Ä_ Ä_ Ä_ x 25 x "
œ x lim Ä_
26 Èx2 25 Èx2 "
œ x lim Ä_
26 x
É1 x252 É1 x12
œ
0 11
œ0
È 2 ˆx 3 ‰ ˆ x ‰ x 82. x Ä lim lim lim Š Èx2 3 x‹ œ x Ä ’Èx2 3 x“ † ’ Èxx2 33 “œxÄ _ _ _ Èx2 3 x x 3 È x2 3x 3 œxÄ lim œ lim œ lim œ 1 0 1 œ 0 2 È 3 x _ x Ä _ É1 2 È x Ä _ É1 32 1 x 3x x x x2 2
2
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
ˆx2 25‰ ˆx2 "‰ Èx2 25 Èx2 "
Section 2.6 Limits Involving Infinity; Asymptotes of Graphs È
ˆ4x2 ‰ ˆ4x2 3x 2‰
4x 3x 2 83. x Ä lim lim lim Š 2x È4x2 3x 2‹ œ x Ä ’2x È4x2 3x 2“ † ’ 2x “œxÄ _ _ _ 2x È4x2 3x 2 2x È4x2 3x 2 c3x b 2 c3x b 2 3 x2 Èx2 3x 2 cx œxÄ lim œxÄ lim œxÄ lim œxÄ lim _ 2x È4x2 3x 2 _ È2x É4 3 22 _ 2x É4 3 22 _ 2 É4 3 22 x x x cx x x x x2 œ 3202 œ 43 2
È 2 84. x lim Š È9x2 x 3x‹ œ œ x lim ’È9x2 x 3x“ † ’ È9x2 x 3x “ œ x lim Ä_ Ä_ Ä_ 9x x 3x
œ x lim Ä_
x È9x2 x 3x
œ x lim Ä_
xx 2 É 9x2 x
xx2 3x x
1 É9 "x 3
œ x lim Ä_
œ
1 33
ˆ9x2 x‰ ˆ9x2 ‰ È9x2 x 3x
œ "6
È 2 È 2 85. x lim Š Èx2 3x Èx2 2x‹ œ x lim ’ Èx2 3x Èx2 2x“ † ’ Èx2 3x Èx2 2x “ œ x lim Ä_ Ä_ Ä_ x 3x x 2x 5x 5 5 5 œ x lim œ x lim œ 11 œ # È 2 3 2 Ä_ È 2 Ä_ x 3x
x 2x
É1 x É1 x
Èx# x Èx# x œ lim ’Èx# x Èx# x“ † ’ Èx# x Èx# x “ œ lim 86. x lim È x# x È x# x Ä_ xÄ_ xÄ_ 2x 2 2 œ x lim œ x lim œ 11 œ 1 È # " " Ä_ È # Ä_ x x
ˆx2 3x‰ ˆx2 2x‰ Èx2 3x Èx2 2x
x x
ax # x b a x # x b È x# x È x# x
É1 x É1 x
87. For any % 0, take N œ 1. Then for all x N we have that kf(x) kk œ kk kk œ 0 %. 88. For any % 0, take N œ 1. Then for all y N we have that kf(x) kk œ kk kk œ 0 %. " x#
89. For every real number B 0, we must find a $ 0 such that for all x, 0 kx 0k $ Ê
" x#
Ê
B ! Í " x#
" x#
#
B0 Í x
" B
" ÈB
Í kxk
. Choose $ œ
" ÈB
, then 0 kxk $ Ê kxk
xÄ!
B ! Í lxl B" . Choose $ œ B" . Then ! kx 0k $ Ê lxl
" B
Ê
" lx l
" lx l
2 (x 3)#
B ! Í
2 (x 3)#
$ œ É B2 , then 0 kx 3k $ Ê
B0 Í 2 (x 3)#
(x 3) 2
#
" B
Í (x 3)#
B 0 so that lim
2
# x Ä $ (x 3)
2 B
B. Now,
x Ä ! lx l 2 (x 3)#
Now,
#
B ! Í (x 5)
Ê kx 5k
" ÈB
Ê
" (x 5)#
" B
Í kx 5k
B so that lim
"
" ÈB
# x Ä & (x 5)
. Choose $ œ
œ _.
B.
Í ! kB $k É B2 . Choose
œ _.
92. For every real number B 0, we must find a $ 0 such that for all x, 0 kx (5)k $ Ê 1 (x 5)#
"
B so that lim
91. For every real number B 0, we must find a $ 0 such that for all x, 0 kx 3k $ Ê Now,
" ÈB
B so that lim x"# œ _.
90. For every real number B 0, we must find a $ 0 such that for all x, ! kx 0k $ Ê " lx l
B. Now,
" ÈB
1 (x 5)#
B.
. Then 0 kx (5)k $
œ _.
93. (a) We say that f(x) approaches infinity as x approaches x! from the left, and write lim c f(x) œ _, if x Ä x! for every positive number B, there exists a corresponding number $ 0 such that for all x, x! $ x x! Ê f(x) B. (b) We say that f(x) approaches minus infinity as x approaches x! from the right, and write lim b f(x) œ _, x Ä x!
if for every positive number B (or negative number B) there exists a corresponding number $ 0 such that for all x, x! x x! $ Ê f(x) B.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
79
80
Chapter 2 Limits and Continuity (c) We say that f(x) approaches minus infinity as x approaches x! from the left, and write lim f(x) œ _, x Ä x!
if for every positive number B (or negative number B) there exists a corresponding number $ 0 such that for all x, x! $ x x! Ê f(x) B. 94. For B 0,
" x
B 0 Í x B" . Choose $ œ B" . Then ! x $ Ê 0 x
95. For B 0,
" x
B 0 Í x" B 0 Í x
Ê B" x Ê 96. For B !,
" x#
" x
B so that lim c xÄ!
" x
" B
Ê
" x#
" x#
Ê 99. y œ
101. y œ
" x#
B ! so that lim b xÄ#
œx1
x# % x"
B so that lim b xÄ!
" x
œ _.
" B
Í x 2 B" Í x 2 B" . Choose $ œ B" . Then " x#
B 0 so that lim c xÄ#
" x#
œ _.
B Í ! x 2 B" . Choose $ œ B" . Then # x # $ Ê ! x # $ Ê ! x 2
" 1 x#
" x"
œx"
$ x"
œ _.
B Í 1 x#
" #B . Then " $ x " Ê " 1 x# B for ! x 1 and x# x"
" x
œ _.
B Í x " # B Í (x 2)
98. For B 0 and ! x 1, $
Ê
Í B" x. Choose $ œ B" . Then $ x !
2 $ x 2 Ê $ x 2 ! Ê B" x 2 0 Ê 97. For B 0,
" B
" B
Í (" x)(" x) B" . Now
$ x 1 0 Ê " x $ x near 1 Ê
"
lim # x Ä "c " x
" #B
1x #
1 since x 1. Choose Ê (" x)(" x) B" ˆ 1 # x ‰ B"
œ _.
100. y œ
x# " x1
œx"
102. y œ
x2 " #x %
œ #" x "
# x1
$ #x %
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
" B
Section 2.6 Limits Involving Infinity; Asymptotes of Graphs 103. y œ
x# 1 x
105. y œ
x È 4 x#
œx
107. y œ x#Î$
" x
104. y œ
x$ 1 x#
106. y œ
" È 4 x#
œx
" x#
108. y œ sin ˆ x# 1 1 ‰
" x"Î$
109. (a) y Ä _ (see accompanying graph) (b) y Ä _ (see accompanying graph) (c) cusps at x œ „ 1 (see accompanying graph)
110. (a) y Ä 0 and a cusp at x œ 0 (see the accompanying graph) (b) y Ä 32 (see accompanying graph) (c) a vertical asymptote at x œ 1 and contains the point Š1,
3 ‹ 3 2È 4
(see accompanying graph)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
81
82
Chapter 2 Limits and Continuity
CHAPTER 2 PRACTICE EXERCISES 1. At x œ 1: Ê
f(x) œ
lim
x Ä "c
lim
x Ä "b
f(x) œ 1
lim f(x) œ 1 œ f(1)
x Ä 1
Ê f is continuous at x œ 1. At x œ 0: lim c f(x) œ lim b f(x) œ 0 Ê lim f(x) œ 0. xÄ!
xÄ!
xÄ!
But f(0) œ 1 Á lim f(x) xÄ!
Ê f is discontinuous at x œ 0. If we define fa!b œ !, then the discontinuity at x œ ! is removable. At x œ 1: lim c f(x) œ 1 and lim f(x) œ 1 xÄ"
Ê lim f(x) does not exist
xÄ"
xÄ1
Ê f is discontinuous at x œ 1. 2. At x œ 1: Ê
f(x) œ 0 and
lim
x Ä "
lim
x Ä "
f(x) œ 1
lim f(x) does not exist
x Ä "
Ê f is discontinuous at x œ 1. At x œ 0: lim f(x) œ _ and lim f(x) œ _ xÄ!
Ê lim f(x) does not exist
xÄ!
xÄ!
Ê f is discontinuous at x œ 0. At x œ 1: lim f(x) œ lim f(x) œ 1 Ê lim f(x) œ 1. xÄ"
xÄ1
xÄ"
But f(1) œ 0 Á lim f(x) xÄ1
Ê f is discontinuous at x œ 1. If we define fa"b œ ", then the discontinuity at x œ " is removable. 3. (a) (b) (c) (d) (e) (f)
lim a3fatbb œ 3 lim fatb œ 3(7) œ 21
t Ä t!
t Ä t!
#
lim afatbb# œ Š lim fatb‹ œ a(b# œ 49
t Ä t!
t Ä t!
lim afatb † gatbb œ lim fatb † lim gatb œ (7)(0) œ 0
t Ä t!
t Ä t!
lim fatb t Ä t! g(t)7
Ät
t Ä t!
lim fatb
œ
Ät
t
œ
!
lim agatb 7b
t
t
!
Ät
lim fatb
Ät
t
!
Ät
lim gatb lim 7 t
!
!
œ
7 07
œ1
lim cos agatbb œ cos Š lim gatb‹ œ cos ! œ 1
t Ä t!
t Ä t!
lim kfatbk œ ¹ lim fatb¹ œ k7k œ 7
t Ä t!
t Ä t!
(g) lim afatb gatbb œ lim fatb lim gatb œ 7 0 œ 7 t Ä t!
(h)
4. (a) (b) (c) (d)
t Ä t!
lim Š " ‹ t Ä t! fatb
œ
" lim fatb
t
Ät
t Ä t!
" 7
œ
!
œ 71
lim g(x) œ lim g(x) œ È2
xÄ!
xÄ!
lim ag(x) † f(x)b œ lim g(x) † lim f(x) œ ŠÈ2‹ ˆ "# ‰ œ
xÄ!
xÄ!
xÄ!
lim af(x) g(x)b œ lim f(x) lim g(x) œ
xÄ!
"
lim x Ä ! f(x)
œ
" lim f(x)
xÄ!
xÄ!
œ
" " #
œ2
xÄ!
" #
È2 #
È2
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 2 Practice Exercises (e) (f)
" #
lim ax f(x)b œ lim x lim f(x) œ 0
xÄ!
xÄ!
f(x)†cos x x 1 xÄ!
lim
xÄ!
lim f(x)† lim cos x
œ
xÄ!
xÄ!
lim x lim 1
xÄ!
xÄ!
œ
ˆ "# ‰ (1) 01
œ
83
" #
œ #"
5. Since lim x œ 0 we must have that lim (4 g(x)) œ 0. Otherwise, if lim (% g(x)) is a finite positive xÄ!
xÄ!
xÄ!
’ 4xg(x) “
’ 4xg(x) “
œ _ and lim b œ _ so the limit could not equal 1 as xÄ! x Ä 0. Similar reasoning holds if lim (4 g(x)) is a finite negative number. We conclude that lim g(x) œ 4. number, we would have lim c xÄ!
xÄ!
6. 2 œ lim
x Ä %
xÄ!
’x lim g(x)“ œ lim x † lim xÄ!
x Ä %
’ lim g(x)“ œ 4 lim xÄ!
x Ä %
(since lim g(x) is a constant) Ê lim g(x) œ xÄ!
xÄ!
2 %
x Ä %
œ #" .
’ lim g(x)“ œ 4 lim g(x) xÄ!
xÄ!
7. (a) xlim faxb œ xlim x"Î$ œ c"Î$ œ facb for every real number c Ê f is continuous on a_ß _b. Äc Äc (b) xlim gaxb œ xlim x$Î% œ c$Î% œ gacb for every nonnegative real number c Ê g is continuous on Ò!ß _Ñ. Äc Äc " c#Î$ " c"Î'
(c) xlim haxb œ xlim x#Î$ œ Äc Äc (d) xlim kaxb œ xlim x"Î' œ Äc Äc
œ hacb for every nonzero real number c Ê h is continuous on a_ß !b and a_ß _b. œ kacb for every positive real number c Ê k is continuous on a!ß _b
8. (a) - ˆˆn "# ‰1ß ˆn "# ‰1‰, where I œ the set of all integers. n−I (b) - an1ß an 1b1b, where I œ the set of all integers. n−I (c) a_ß 1b a1ß _b (d) a_ß !b a!ß _b 9.
(a)
x# 4x 4 x2
lim x Ä !c x(x 7) (b) 10. (a)
#
x# x
œ lim
1 x# (x 1)
x# x
x # a# x % a%
œ xlim Äa
13. lim
(x h)# x# h
œ lim
(x h)# x# h xÄ!
œ lim
xÄ!
x
œ _ and lim b xÄ!
" Èx
ax # a # b ax # a # b a x # a # b
hÄ!
œ lim
xÄ!
1 x# (x 1)
2 (2 x) 2x(# x)
œ lim
#
x x
"
"
œ
œ
œ
0 2(9)
œ0
, x Á 0 and x Á 1.
œ _.
, x Á 0 and x Á 1. The limit does not
1
lim # x Ä "b x (x 1)
"
# x Ä 0 x (x 1)
& % $ x Ä ! x 2x x
# x Ä " x (x 1)
" x # a#
œ xlim Äa
œ lim
œ _ Ê lim
œ lim
x2
x Ä # x(x 7)
x1
x Ä 1 1 Èx
ax# 2hx h# b x# h xÄ!
, x Á 2, and lim
# x Ä ! x (x 1)(x 1)
œ lim
ax# 2hx h# b x# h
x2
œ lim
œ _ and
x Ä 1 ˆ1 È x ‰ ˆ 1 È x ‰
, x Á 2; the limit does not exist because
x Ä # x(x 7)
x(x 1)
"
12. xlim Äa
" " x #
x(x 1)
lim # x Ä "c x (x 1)
œ lim
#
œ lim
$ # x Ä " x ax 2x 1b
1 Èx 1x
15. lim
(x 2)(x 2)
œ lim
11. lim
14. lim
œ _
$ # x Ä ! x ax 2x 1b
lim & % $ x Ä " x 2x x
hÄ!
x2 x(x 7)
x2
x Ä ! x(x 7)
x Ä # x(x 7)(x #)
œ lim
lim & % $ x Ä ! x 2x x
xÄ1
œ lim
œ _ and lim b xÄ!
x 4x 4
exist because
(x 2)(x 2)
x Ä ! x(x 7)(x 2)
lim $ # x Ä # x 5x 14x
Now lim c xÄ! (b)
œ lim
lim $ # x Ä ! x 5x 14x
œ _.
" #
" #a #
œ lim (2x h) œ 2x hÄ!
œ lim (2x h) œ h xÄ!
"
x Ä ! 4 #x
œ "4
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
84
Chapter 2 Limits and Continuity (# x)$ 8 x
16. lim
xÄ!
ax$ 6x# 12x 8b 8 x
œ lim
xÄ!
ˆx1Î3 1‰ x1Î3 1 œ lim ˆÈx 1‰ È x 1 xÄ1 xÄ1 œ 1 1 1 1 1 œ 23
17. lim
18.
tan 2x
œ lim
sin 2x
x Ä ! cos 2x
lim csc x œ limc x1
20.
x Ä 1c
21.
xÄ1
22.
xÄ1
ax 1bˆÈx 1‰
œ lim
2Î3 1Î3 x Ä 1 ax 1bax x 1b
Èx 1
œ lim
2Î3 1Î3 x Ä 1 x x 1
1 sin x
†
1x ‰ˆ 1x ‰ˆ 2x ‰ œ lim ˆ sin2x2x ‰ˆ cos cos 2x sin 1x 1x œ 1 † 1 † 1 †
cos 1x sin 1x
xÄ!
2 1
œ
2 1
œ_
lim sin ˆ x2 sin x‰ œ sin ˆ 12 sin 1‰ œ sin ˆ 12 ‰ œ 1
lim cos2 ax tan xb œ cos2 a1 tan 1b œ cos2 a1b œ a1b2 œ 1
23. lim xÄ0 24. lim xÄ0
8x 3sin x x
œ lim xÄ0
cos 2x 1 sin x
2x 1 œ lim ˆ cossin † x xÄ0
8 3 sinx x 1
œ
8 3 a1 b 1
œ4
cos 2x 1 ‰ cos 2x 1
œ lim xÄ0
"Î$
lim [4 g(x)]"Î$ œ 2 Ê ’ lim b 4 g(x)“ x Ä !b xÄ! lim
x Ä È&
27. lim
xÄ1
28.
ˆx2Î3 x1Î3 1‰ˆÈx 1‰ ˆÈx 1‰ax2Î3 x1Î3 1b
ˆx1Î3 4‰ˆx1Î3 4‰ ˆx1Î3 4‰ˆx1Î3 4‰ ˆx2Î3 4x1Î3 16‰ˆÈx )‰ x2Î3 16 œ lim œ lim † ˆÈx )‰ax2Î3 4x1Î3 16b È È Èx 8 x 8 x 8 x Ä 64 x Ä 64 x Ä 64 ˆx1Î3 4‰ˆÈx )‰ ax 64bˆx1Î3 4‰ˆÈx )‰ 4 4ba8 8b 8 œ lim ax 64bax2Î3 4x1Î3 16b œ lim x2Î3 4x1Î3 16 œ a16 16 16 œ 3 x Ä 64 x Ä 64
x Ä ! tan 1x
26.
xÄ!
lim
19. lim
25.
†
œ lim ax# 6x 12b œ 12
" x g(x)
3x# 1 g(x)
xÄ1
5 x#
œ
(x g(x)) œ
lim
x Ä È&
œ2 Ê " #
œ lim xÄ0
sin2 2x sin xacos 2x 1b
œ lim xÄ0
4sin x cos2 x cos 2x 1
œ0 Ê
Ê È5 lim
x Ä È5
g(x) œ
" #
Ê
lim
x Ä È5
g(x) œ
" #
È5
xÄ1
lim g(x) œ _ since lim a5 x# b œ 1
x Ä #
x Ä #
lim f(x) œ lim c x Ä "c x Ä "
lim x Ä "c
x ax # 1 b x# 1
œ
lim
x Ä "c
x ax # 1 b kx # 1 k
x œ 1, and
#
lim f(x) œ lim b xkaxx# 11k b œ lim b x Ä "b x Ä " x Ä " œ lim (x) œ (1) œ 1. Since
x ax # 1 b a x # "b
x Ä 1
lim f(x) Á lim b f(x) x Ä "c x Ä " Ê
lim f(x) does not exist, the function f cannot be
x Ä 1
extended to a continuous function at x œ 1. At x œ 1:
lim f(x) œ lim c
x Ä "c
xÄ"
x ax # 1 b kx # 1 k
x ax # 1 b kx # 1 k
œ lim c xÄ"
x ax # 1 b x# "
x ax # 1 b ax # 1 b
œ lim c (x) œ 1, and xÄ"
lim f(x) œ lim b œ lim b œ lim b x œ 1. Again lim f(x) does not exist so f xÄ1 xÄ" xÄ" xÄ1 cannot be extended to a continuous function at x œ 1 either.
x Ä "b
œ
4a0ba1b2 11
lim 4 g(x) œ 8, since 2$ œ 8. Then lim b g(x) œ 2. xÄ!
x Ä !b
œ _ Ê lim g(x) œ 0 since lim a3x# 1b œ 4
lim x Ä # Èg(x)
29. At x œ 1:
œ2 Ê
cos2 2x 1 sin xacos 2x 1b
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
œ0
Chapter 2 Practice Exercises 30. The discontinuity at x œ 0 of f(x) œ sin ˆ "x ‰ is nonremovable because lim sin xÄ!
" x
does not exist.
31. Yes, f does have a continuous extension to a œ 1: " define f(1) œ lim xxÈ œ 43 . % x xÄ1
32. Yes, g does have a continuous extension to a œ 1# : ) 5 g ˆ 1# ‰ œ lim1 45)cos #1 œ 4 . )Ä #
33. From the graph we see that lim h(t) Á lim h(t) tÄ! tÄ! so h cannot be extended to a continuous function at a œ 0.
34. From the graph we see that lim c k(x) Á lim b k(x) xÄ! xÄ! so k cannot be extended to a continuous function at a œ 0.
35. (a) f(1) œ 1 and f(2) œ 5 Ê f has a root between 1 and 2 by the Intermediate Value Theorem. (b), (c) root is 1.32471795724 36. (a) f(2) œ 2 and f(0) œ 2 Ê f has a root between 2 and 0 by the Intermediate Value Theorem. (b), (c) root is 1.76929235424 # $
#x $ x 37. x lim œ x lim œ Ä _ &x ( Ä _ & (x
x 39. x Ä lim _
#
%x ) $x $
#! &!
ˆ" œxÄ lim _ $x
œ
#
# &
% $x#
#
#x $ 38. x Ä lim œxÄ lim _ &x# ( _ &
) ‰ $x$
$ x# ( x#
œ
#! &!
œ!!!œ!
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
œ
# &
85
86
Chapter 2 Limits and Continuity "
" x# 40. x lim œ x lim œ Ä _ x # (x " Ä _ " (x x"#
! "!!
œ!
#
%
x (x x( 41. x Ä lim œxÄ lim œ _ _ x 1 _ " "x
$
x x x" 42. x lim œxÄ lim œ_ Ä _ "#x$ "#) _ "# "#) x$
sin x " sin x 43. x lim Ÿ x lim œ ! since int x Ä _ as x Ä _ Êx lim œ !. Ä _ gx h Ä _ gx h Ä _ gx h
44.
lim
)Ä_
45. x lim Ä_
cos ) " )
Ÿ lim
#
) Ä _)
x sin x #Èx x sin x
#Î$
œ ! Ê lim
)Ä_
œ x lim Ä_
cos ) " )
" sinx x È#x " sinx x
"
œ
&Î$
x x " x 46. x lim œ x lim #x œ Ä _ x#Î$ cos# x Ä _Œ " cos#Î$
œ !.
"!! "!
"! "!
œ"
œ"
x
47. (a) y œ (b) y œ
x2 4 x3
is undefined at x œ 3: lim c xx 34 œ _ and lim b xx 34 œ _, thus x œ 3 is a vertical asymptote. xÄ3 xÄ3 2
x2 x 2 x2 2x 1
2
is undefined at x œ 1: lim c xÄ1
x2 x 2 x2 2x 1
œ _ and lim b xÄ1
x2 x 2 x2 2x 1
œ _, thus x œ 1 is a vertical
asymptote. (c) y œ
x2 x ' x2 2x 8
is undefined at x œ 2 and 4: lim
x x' 2
œ lim b x Ä %
lim 2 x Ä %b x 2x 8 48. (a) y œ
1 x2 1 x2 x2 " : x lim Ä _ x2 "
x3 x4
x2 x '
2 x Ä 2 x 2x 8
x3
œ lim
x Ä 2 x4
œ 56 ; lim c x Ä %
x2 x ' x2 2x 8
œ lim c x Ä %
x3 x4
œ_
œ _. Thus x œ 4 is a vertical asymptote. 1
1
x2 œ x lim Ä _ 1
1 x2
œ
1
1
1 1
1x œ 1 and x Ä lim œ lim x2 œ _ x2 " x Ä _ 1 x12
œ
10 È1 0
2
1 1
œ 1, thus y œ 1 is a
horizontal asymptote. (b) y œ
Èx 4 Èx 4 Èx 4 : x lim Ä _ Èx 4
(c) y œ
È x2 4 È x2 4 : x lim x x Ä_
œx Ä lim _
É1 x42 1
œ
œ x lim Ä_
È1 0 1
1 È4x É1 B4
œ x lim Ä_ œ
1 1
É1 x42 1
œ
œ 1 , thus y œ 1 is a horizontal asymptote.
È1 0 1
œ 1 and x lim Ä _
thus y œ
1
2
" 3
œx Ä lim_
É1 x42
È
9
" 3
x xx
2
is a horizontal asymptote.
0.1 0.7943
œx Ä lim _
É1 x42 x
cx
0.01 0.9550
0.001 0.9931
0.0001 0.9991
1
9
x 9 0 " x2 É 9x and x Ä lim lim œ É 19 21 œ 0 œ 3, _ x Ä _ Ê 9 x12
CHAPTER 2 ADDITIONAL AND ADVANCED EXERCISES 1. (a)
x x2
œ 1, thus y œ 1 and y œ 1 are horizontal asymptotes.
x 9 x 9 0 x2 (d) y œ É 9x lim É 9x lim œ É 91 21: 21 œ 0 œ xÄ_ x Ä _ Ê 9 x12 2
È x2 4 x
0.00001 0.9999
Apparently, lim b xx œ 1 xÄ!
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 2 Additional and Advanced Exercises 87 (b)
2. (a)
x ˆ "x ‰"ÎÐln xÑ Apparently,
10
100
1000
0.3679
0.3679
0.3679
"ÎÐln xÑ lim ˆ " ‰ xÄ_ x
œ 0.3678 œ
" e
(b)
3.
lim L œ lim c L! É" v Ä cc vÄc
v# c#
lim v œ L! É1 vÄcc # œ L! É1 #
c# c#
œ0
The left-hand limit was needed because the function L is undefined if v c (the rocket cannot move faster than the speed of light). 4. (a) ¹
Èx #
1¹ 0.2 Ê 0.2
Èx #
1 0.2 Ê 0.8
Èx #
1.2 Ê 1.6 Èx 2.4 Ê 2.56 x 5.76.
(b) ¹
Èx #
1¹ 0.1 Ê 0.1
Èx #
1 0.1 Ê 0.9
Èx #
1.1 Ê 1.8 Èx 2.2 Ê 3.24 x 4.84.
5. k10 (t 70) ‚ 10% 10k 0.0005 Ê k(t 70) ‚ 10% k 0.0005 Ê 0.0005 (t 70) ‚ 10% 0.0005 Ê 5 t 70 5 Ê 65° t 75° Ê Within 5° F. 6. We want to know in what interval to hold values of h to make V satisfy the inequality lV "!!!l œ l$'1h "!!!l Ÿ "!. To find out, we solve the inequality: **! l$'1h "!!!l Ÿ "! Ê "! Ÿ $'1h "!!! Ÿ "! Ê **! Ÿ $'1h Ÿ "!"! Ê $' 1 Ÿ hŸ
"!"! $'1
Ê )Þ) Ÿ h Ÿ )Þ*. where 8.8 was rounded up, to be safe, and 8.9 was rounded down, to be safe. The interval in which we should hold h is about )Þ* )Þ) œ !Þ" cm wide (1 mm). With stripes 1 mm wide, we can expect to measure a liter of water with an accuracy of 1%, which is more than enough accuracy for cooking.
7. Show lim f(x) œ lim ax# 7b œ ' œ f(1). xÄ1
xÄ1
Step 1: kax 7b 6k % Ê % x# 1 % Ê 1 % x# 1 % Ê È1 % x È1 %. #
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
88
Chapter 2 Limits and Continuity Step 2: kx 1k $ Ê $ x 1 $ Ê $ " x $ ". Then $ " œ È1 % or $ " œ È1 %. Choose $ œ min š1 È1 %ß È1 % 1› , then 0 kx 1k $ Ê kax# (b 6k % and lim f(x) œ 6. By the continuity test, f(x) is continuous at x œ 1. xÄ1
8. Show lim" g(x) œ lim" xÄ
xÄ
%
" 2x
œ 2 œ g ˆ 4" ‰ .
%
Step 1: ¸ #"x 2¸ % Ê % #"x # % Ê # % #"x # % Ê Step 2: ¸B "4 ¸ $ Ê $ x 4" $ Ê $ 4" x $ 4" . Then $ Choose $ œ
" 4
œ
" 4 #%
% 4(#%)
Ê $œ
" 4
" 4 #%
œ
% 4(2 %)
, or $
" 4
œ
, the smaller of the two values. Then 0 ¸x
By the continuity test, g(x) is continuous at x œ
" 4
" 4 #% Ê 4" ¸ $
" 4#%
x
" 4 #% ¸ #"x
" 4#%
.
" 4
% 4(2 %)
$œ
œ
Ê
2¸ % and lim"
.
xÄ
%
" #x
œ 2.
.
9. Show lim h(x) œ lim È2x 3 œ " œ h(2). xÄ#
xÄ#
Step 1: ¹È2x 3 1¹ % Ê % È2x 3 " % Ê " % È2x 3 " % Ê
(1 %)# $ #
x
(" %)# 3 . #
Step 2: kx 2k $ Ê $ x 2 $ or $ # x $ #. (" % )# $ Ê $œ # (" % Ñ # $ (" %Ñ# " #œ # #
Then $ # œ
#
Ê $œ
œ%
# (" %)# $ œ " (1# %) # # %# . Choose $ œ %
œ%
%# #,
%# #
, or $ # œ
(" %)# $ #
the smaller of the two values . Then,
! kx 2k $ Ê ¹È2x 3 "¹ %, so lim È2x 3 œ 1. By the continuity test, h(x) is continuous at x œ 2. xÄ#
10. Show lim F(x) œ lim È9 x œ # œ F(5). xÄ&
xÄ&
Step 1: ¹È9 x 2¹ % Ê % È9 x # % Ê 9 (2 %)# x * (# %)# . Step 2: 0 kx 5k $ Ê $ x & $ Ê $ & x $ &. Then $ & œ * (# %)# Ê $ œ (# %)# % œ %# #%, or $ & œ * (# %)# Ê $ œ % (# %)# œ %# #%. Choose $ œ %# #%, the smaller of the two values. Then, ! kx 5k $ Ê ¹È9 x #¹ %, so lim È9 x œ #. By the continuity test, F(x) is continuous at x œ 5.
xÄ&
11. Suppose L" and L# are two different limits. Without loss of generality assume L# L" . Let % œ
" 3
(L# L" ).
Since x lim f(x) œ L" there is a $" 0 such that 0 kx x! k $" Ê kf(x) L" k % Ê % f(x) L" % Äx !
Ê "3 (L# L" ) L" f(x)
" 3
(L# L" ) L" Ê 4L" L# 3f(x) 2L" L# . Likewise, x lim f(x) œ L# Ä x! so there is a $# such that 0 kx x! k $# Ê kf(x) L# k % Ê % f(x) L# % Ê "3 (L# L" ) L# f(x) 3" (L# L" ) L# Ê 2L# L" 3f(x) 4L# L" Ê L" 4L# 3f(x) 2L# L" . If $ œ min e$" ß $# f both inequalities must hold for 0 kx x! k $ : 4L" L# 3f(x) 2L" L# Ê 5(L" L# ) 0 L" L# . That is, L" L# 0 and L" L# 0, L" %L# 3f(x) 2L# L" a contradiction. 12. Suppose xlim f(x) œ L. If k œ !, then xlim kf(x) œ xlim 0 œ ! œ ! † xlim f(x) and we are done. Äc Äc Äc Äc % If k Á 0, then given any % !, there is a $ ! so that ! lx cl $ Ê lfaxb Ll l5l Ê lkllfaxb Ll % Ê lkafaxb Lb| % Ê lakfaxbb akLbl %. Thus, xlim kf(x) œ kL œ kŠxlim f(x)‹. Äc Äc
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 2 Additional and Advanced Exercises 89 13. (a) Since x Ä 0 , 0 x$ x 1 Ê ax$ xb Ä 0 Ê
lim f ax$ xb œ lim c f(y) œ B where y œ x$ x. yÄ!
x Ä !b
(b) Since x Ä 0 , 1 x x$ 0 Ê ax$ xb Ä 0 Ê
(c) Since x Ä 0 , 0 x% x# 1 Ê ax# x% b Ä 0 Ê
lim f ax$ xb œ lim b f(y) œ A where y œ x$ x. yÄ!
x Ä !c
lim f ax# x% b œ lim b f(y) œ A where y œ x# x% . yÄ!
x Ä !b
(d) Since x Ä 0 , 1 x 0 Ê ! x% x# 1 Ê ax# x% b Ä 0 Ê
lim f ax# x% b œ A as in part (c).
x Ä !b
14. (a) True, because if xlim (f(x) g(x)) exists then xlim (f(x) g(x)) xlim f(x) œ xlim [(f(x) g(x)) f(x)] Äa Äa Äa Äa œ xlim g(x) exists, contrary to assumption. Äa " x
(b) False; for example take f(x) œ
and g(x) œ x" . Then neither lim f(x) nor lim g(x) exists, but xÄ!
lim (f(x) g(x)) œ lim ˆ "x x" ‰ œ lim 0 œ 0 exists.
xÄ!
xÄ!
xÄ!
xÄ!
(c) True, because g(x) œ kxk is continuous Ê g(f(x)) œ kf(x)k is continuous (it is the composite of continuous functions). 1, x Ÿ 0 Ê f(x) is discontinuous at x œ 0. However kf(x)k œ 1 is (d) False; for example let f(x) œ œ 1, x 0 continuous at x œ 0. x# "
15. Show lim f(x) œ lim
x Ä 1 x 1
x Ä 1
(x 1)(x ") (x 1)
œ lim
x Ä 1
Define the continuous extension of f(x) as F(x) œ œ
œ #, x Á 1.
x# 1 x1 ,
2
x Á " . We now prove the limit of f(x) as x Ä 1 , x œ 1
exists and has the correct value. #
Step 1: ¹ xx 1" (#)¹ % Ê %
(x 1)(x ") (x 1)
# % Ê % (x 1) # %, x Á " Ê % " x % ".
Step 2: kx (1)k $ Ê $ x 1 $ Ê $ " x $ ". Then $ " œ % " Ê $ œ %, or $ " œ % " Ê $ œ %. Choose $ œ %. Then ! kx (1)k $ #
Ê ¹ xx 1" a#b¹ % Ê
lim F(x) œ 2. Since the conditions of the continuity test are met by F(x), then f(x) has a
x Ä 1
continuous extension to F(x) at x œ 1. 16. Show lim g(x) œ lim xÄ$
xÄ$
x# 2x 3 2x 6
œ lim
xÄ$
(x 3)(x ") 2(x 3)
œ #, x Á 3. #
Define the continuous extension of g(x) as G(x) œ œ
x 2x 3 2x 6 ,
2
xÁ3 . We now prove the limit of g(x) as , xœ3
x Ä 3 exists and has the correct value. Step 1: ¹ x
#
2x 3 #x 6
2¹ % Ê %
(x 3)(x ") 2(x 3)
# % Ê %
x" #
# % , x Á $ Ê $ #% x $ #% .
Step 2: kx 3k $ Ê $ x 3 $ Ê $ $ x $ $. Then, $ $ œ $ #% Ê $ œ #%, or $ $ œ $ #% Ê $ œ #%. Choose $ œ #%. Then ! kx 3k $ Ê ¹x
#
2x 3 2x 6
2¹ % Ê lim
xÄ$
(x 3)(x ") #(x 3)
œ 2. Since the conditions of the continuity test hold for G(x),
g(x) can be continuously extended to G(x) at B œ 3. 17. (a) Let % ! be given. If x is rational, then f(x) œ x Ê kf(x) 0k œ kx 0k % Í kx 0k %; i.e., choose $ œ %. Then kx 0k $ Ê kf(x) 0k % for x rational. If x is irrational, then f(x) œ 0 Ê kf(x) 0k % Í ! % which is true no matter how close irrational x is to 0, so again we can choose $ œ %. In either case, given % ! there is a $ œ % ! such that ! kx 0k $ Ê kf(x) 0k %. Therefore, f is continuous at x œ 0. (b) Choose x œ c !. Then within any interval (c $ ß c $ ) there are both rational and irrational numbers. If c is rational, pick % œ #c . No matter how small we choose $ ! there is an irrational number x in (c $ ß c $ ) Ê kf(x) f(c)k œ k0 ck œ c
c #
œ %. That is, f is not continuous at any rational c 0. On
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
90
Chapter 2 Limits and Continuity the other hand, suppose c is irrational Ê f(c) œ 0. Again pick % œ #c . No matter how small we choose $ ! there is a rational number x in (c $ ß c $ ) with kx ck œ kxk
c #
œ% Í
œ % Ê f is not continuous at any irrational c 0.
If x œ c 0, repeat the argument picking % œ nonzero value x œ c. 18. (a) Let c œ
c #
kc k #
œ
c # .
x
c #
Then kf(x) f(c)k œ kx 0k
3c #.
Therefore f fails to be continuous at any
m n
be a rational number in [0ß 1] reduced to lowest terms Ê f(c) œ "n . Pick % œ
" #n
œ %. Therefore f is discontinuous at x œ c, a rational number.
" #n .
No matter how small $ ! is taken, there is an irrational number x in the interval (c $ ß c $ ) Ê kf(x) f(c)k œ ¸0 "n ¸ œ
" n
(b) Now suppose c is an irrational number Ê f(c) œ 0. Let % 0 be given. Notice that number reduced to lowest terms with denominator 2 and belonging to [0ß 1]; denominator 3 belonging to [0ß 1];
" 4
and
[0ß 1]; etc. In general, choose N so that
" N
3 4
with denominator 4 in [0ß 1];
" 3
and
" 2 3 5, 5, 5
2 3
and
" #
is the only rational
the only rationals with 4 5
with denominator 5 in
% Ê there exist only finitely many rationals in [!ß "] having
denominator Ÿ N, say r" , r# , á , rp . Let $ œ min ekc ri k : i œ 1ß á ß pf . Then the interval (c $ ß c $ ) contains no rational numbers with denominator Ÿ N. Thus, 0 kx ck $ Ê kf(x) f(c)k œ kf(x) 0k œ kf(x)k Ÿ N" % Ê f is continuous at x œ c irrational. (c) The graph looks like the markings on a typical ruler when the points (xß f(x)) on the graph of f(x) are connected to the x-axis with vertical lines.
19. Yes. Let R be the radius of the equator (earth) and suppose at a fixed instant of time we label noon as the zero point, 0, on the equator Ê 0 1R represents the midnight point (at the same exact time). Suppose x" is a point on the equator “just after" noon Ê x" 1R is simultaneously “just after" midnight. It seems reasonable that the temperature T at a point just after noon is hotter than it would be at the diametrically opposite point just after midnight: That is, T(x" ) T(x" 1R) 0. At exactly the same moment in time pick x# to be a point just before midnight Ê x# 1R is just before noon. Then T(x# ) T(x# 1R) 0. Assuming the temperature function T is continuous along the equator (which is reasonable), the Intermediate Value Theorem says there is a point c between 0 (noon) and 1R (simultaneously midnight) such that T(c) T(c 1R) œ 0; i.e., there is always a pair of antipodal points on the earth's equator where the temperatures are the same. #
#
# # " 20. xlim f(x)g(x) œ xlim af(x) g(x)b‹ Šxlim af(x) g(x)b‹ “ ’af(x) g(x)b af(x) g(x)b “ œ "% ’Šxlim Äc Äc % Äc Äc œ "% ˆ$# a"b# ‰ œ #.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 2 Additional and Advanced Exercises 91 21. (a) At x œ 0: lim r (a) œ lim aÄ!
œ lim
1 (" a)
aÄ!
a Ä ! a ˆ" È1 a‰
At x œ 1: (b) At x œ 0:
lim
a Ä "b
œ
r (a) œ
" È1 a a 1 " È1 0
œ lim c aÄ!
1 (" a) a ˆ" È1 a‰
" #
œ
aÄ!
1 (1 a)
lim
a Ä "b a ˆ1 È1 a‰
lim r (a) œ lim c aÄ!
a Ä !c
È1 a
œ lim Š " a
" È1 a a
œ lim c aÄ!
a
œ lim
a Ä 1 a ˆ" È1 a‰ È1 a
œ lim c Š " a aÄ!
a a ˆ 1 È 1 a ‰
" È1 a
‹ Š " È1 a ‹
œ lim c aÄ!
œ
" " È0
œ1
" È1 a
‹ Š " È1 a ‹
" œ _ (because the " È1 a " œ _ (because the " È1 a
denominator is always negative); lim b r (a) œ lim b aÄ! aÄ! is always positive). Therefore, lim r (a) does not exist.
denominator
aÄ!
At x œ 1:
lim
a Ä "b
r (a) œ
lim
a Ä "b
1 È 1 a a
œ
lim
"
a Ä 1b " È1 a
œ1
(c)
(d)
22. f(x) œ x 2 cos x Ê f(0) œ 0 2 cos 0 œ 2 0 and f(1) œ 1 2 cos (1) œ 1 # 0. Since f(x) is continuous on [1ß !], by the Intermediate Value Theorem, f(x) must take on every value between [1 #ß #]. Thus there is some number c in [1ß !] such that f(c) œ 0; i.e., c is a solution to x 2 cos x œ 0. 23. (a) The function f is bounded on D if f(x) M and f(x) Ÿ N for all x in D. This means M Ÿ f(x) Ÿ N for all x in D. Choose B to be max ekMk ß kNkf . Then kf(x)k Ÿ B. On the other hand, if kf(x)k Ÿ B, then B Ÿ f(x) Ÿ B Ê f(x) B and f(x) Ÿ B Ê f(x) is bounded on D with N œ B an upper bound and M œ B a lower bound. (b) Assume f(x) Ÿ N for all x and that L N. Let % œ L # N . Since x lim f(x) œ L there is a $ ! such that Äx !
0 kx x! k $ Ê kf(x) Lk % Í L % f(x) L % Í L Í
LN #
f(x)
3L N # .
But L N Ê
LN #
LN #
f(x) L
LN #
N Ê N f(x) contrary to the boundedness assumption
f(x) Ÿ N. This contradiction proves L Ÿ N.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
92
Chapter 2 Limits and Continuity (c) Assume M Ÿ f(x) for all x and that L M. Let % œ Ê L
ML #
f(x) L
ML #
3L M #
Í
f(x)
ML # . As in part (b), 0 kx L M M, a contradiction. #
24. (a) If a b, then a b 0 Ê ka bk œ a b Ê max Öaß b× œ
ab #
ka b k #
If a Ÿ b, then a b Ÿ 0 Ê ka bk œ (a b) œ b a Ê max Öaß b× œ œ
2b #
xÄ0
ab #
sina" cos xb x
œ lim
lim b sinsinÈxx œ
xÄ0
†
sin x
xÄ0
sinasin xb x
xÄ0
sinax# xb x xÄ0
œ lim
29. lim
sinax# %b x2
œ lim
30. lim
sinˆÈx $‰ x9
28. lim
xÄ2
xÄ9
sin x " cos x
xÄ0
œ lim
ka b k #
.
sina" cos xb " cos x
lim b sinB x †
xÄ0
27. lim
œ lim
xÄ0 x
26.
ab ab 2a # # œ # œ a. ka b k ab œ a # b b # a # #
œ
œ b.
(b) Let min Öaß b× œ 25. lim œ
x! k $
sinasin xb sin x
†
" cos x x
Èx sin Èx
†
†
œ lim
sin x x
x Èx
xÄ0
sinasin xb sin x
sinax# %b x# %
† ax 2b œ lim
xÄ9
xÄ0
sinˆÈx $‰ Èx $
† lim
" cos# x
x Ä 0 xa" cos xb
" Èx $
† lim
sin x
xÄ0 x
œ " † lim
sin# x
x Ä 0 xa" cos xb
œ " † " œ ".
sinax# xb # x Ä 0 x x
† lim ax "b œ " † " œ "
sinax# %b x# %
† lim ax 2b œ " † % œ %
xÄ2
†
sina" cos xb " cos x
œ " † lim b sin"Èx † lim b Èx œ " † ! † ! œ !. x Ä 0 Š Èx ‹ x Ä 0
† ax "b œ lim
œ lim
œ lim
œ " † ˆ #! ‰ œ !.
sinax# xb # x Ä 0 x x
xÄ2
" cos x " cos x
†
œ lim
xÄ9
xÄ0
xÄ2
sinˆÈx $‰ Èx $
† lim
"
x Ä 9 Èx $
œ"†
" '
œ
" '
31. Since the highest power of x in the numerator is 1 more than the highest power of x in the denominator, there is an oblique asymptote. y œ 32. As x Ä „ _,
2x3Î2 2x 3 Èx 1 1 x
œ 2x
3 Èx 1 ,
thus the oblique asymptote is y œ 2x.
Ä 0 Ê sinˆ 1x ‰ Ä 0 Ê 1 sinˆ 1x ‰ Ä 1, thus as x Ä „ _, y œ x x sinˆ 1x ‰ œ xˆ1 sinˆ 1x ‰‰ Ä x;
thus the oblique asymptote is y œ x. 33. As x Ä „ _, x2 1 Ä x2 Ê Èx2 1 Ä Èx2 ; as x Ä _, Èx2 œ x, and as x Ä _, Èx2 œ x; thus the oblique asymptotes are y œ x and y œ x. 34. As x Ä „ _, x 2 Ä x Ê Èx2 2x œ Èxax 2b Ä Èx2 ; as x Ä _, Èx2 œ x, and as x Ä _, Èx2 œ x; asymptotes are y œ x and y œ x.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
CHAPTER 3 DIFFERENTIATION 3.1 TANGENTS AND THE DERIVATIVE AT A POINT 1. P" : m" œ 1, P# : m# œ 5
2. P" : m" œ 2, P# : m# œ 0
3. P" : m" œ 5# , P# : m# œ "#
4. P" : m" œ 3, P# : m# œ 3
5. m œ lim
hÄ!
c4 (" h)# d a4 (1)# b h
a1 2h h# b1 h hÄ!
œ lim
œ lim
hÄ!
h(# h) h
œ 2;
at ("ß $): y œ $ #(x (1)) Ê y œ 2x 5, tangent line
6. m œ lim
hÄ!
c(1 h 1)# 1d c(" ")# 1d h
h#
œ lim
hÄ! h
œ lim h œ 0; at ("ß "): y œ 1 0(x 1) Ê y œ 1, hÄ!
tangent line
È 2È 1 h 2È 1 œ lim 2 1 h h 2 h hÄ! hÄ! 4(1 h) 4 œ lim œ lim È1 2h 1 h Ä ! 2h ŠÈ1 h 1‹ hÄ!
7. m œ lim
†
2È 1 h 2 2È 1 h #
œ 1;
at ("ß #): y œ 2 1(x 1) Ê y œ x 1, tangent line
8. m œ lim
hÄ!
"
( 1 h)#
( "")#
h
a2h h# b # h Ä ! h(1 h)
œ lim
1 (1 h)# # h Ä ! h(1h) 2h lim # œ 2; h Ä ! (1 h)
œ lim œ
at ("ß "): y œ 1 2(x (1)) Ê y œ 2x 3, tangent line
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
94
Chapter 3 Differentiation (2 h)$ (2)$ h
9. m œ lim
hÄ!
8 12h 6h# h$ 8 h
œ lim
hÄ!
œ lim a12 6h h# b œ 12; hÄ!
at (2ß 8): y œ 8 12(x (2)) Ê y œ 12x 16, tangent line
10. m œ lim
(
h
hÄ!
œ
"2 8(8)
hÄ!
hÄ!
at ˆ#ß "8 ‰ : y œ 8" Ê yœ 11. m œ lim
hÄ!
x
" #,
12 6h h# 8(2 h)$
œ lim
3 œ 16 ;
3 16
8 (# h)$ 8h(# h)$
œ lim
a12h 6h# h$ b 8h(# h)$
œ lim
hÄ!
" " # h)$ ( #)$
3 16 (x
(2))
tangent line
c(2 h)# 1d 5 h
œ lim
hÄ!
a5 4h h# b 5 h
hÄ!
at (2ß 5): y 5 œ 4(x 2), tangent line 12. m œ lim
hÄ!
c(" h) 2(1 h)# d (1) h
œ lim
hÄ!
h(4 h) h
œ lim
a1 h 2 4h 2h# b 1 h
3 (3
h h) 2
3
h
hÄ!
œ lim
hÄ!
(3 h) 3(h 1) h(h 1)
h Ä ! h(h 1)
at ($ß $): y 3 œ 2(x 3), tangent line 14. m œ lim
hÄ!
8 (2
h)#
2
h
hÄ!
(2 h)$ 8 h hÄ!
œ lim
a8 12h 6h# h$ b 8 h hÄ!
œ lim
16. m œ lim
hÄ!
c(1 h)$ 3(1 h)d 4 h
hÄ!
at ("ß %): y 4 œ 6(t 1), tangent line 17. m œ lim
hÄ!
È4 h 2 h
œ lim
hÄ!
œ "4 ; at (%ß #): y 2 œ 18. m œ lim
hÄ!
œ
" È9 3
È(8 h) 1 3 h
" 4
È4 h 2 h
†
hÄ!
h a12 6h h# b h hÄ!
a1 3h 3h# h$ 3 3hb 4 h
œ lim
œ lim
œ lim
at (2ß )): y 8 œ 12(t 2), tangent line
È4 h 2 È4 h 2
œ 3;
œ 2;
8 2 a4 4h h# b h(2 h)# hÄ!
8 2(2 h)# # h Ä ! h(2 h)
œ lim
at (2ß 2): y 2 œ 2(x 2) 15. m œ lim
2h
œ lim
h(3 2h) h
œ lim
at ("ß "): y 1 œ 3(x 1), tangent line 13. m œ lim
œ %;
œ lim
2h(4 h) h(2 h)#
œ
8 4
œ 2;
œ 12;
œ lim
hÄ!
(4 h) 4
h Ä ! h ŠÈ4 h #‹
h a6 3h h# b h
œ lim
œ 6;
h
h Ä ! h ŠÈ4 h #‹
œ
" È4 #
(x 4), tangent line
œ lim
hÄ!
È9 h 3 h
œ 6" ; at (8ß 3): y 3 œ
19. At x œ 1, y œ 5 Ê m œ lim
hÄ!
" 6
†
È9 h 3 È9 h 3
œ lim
(9 h) 9
h Ä ! h ŠÈ9 h 3‹
œ lim
h
h Ä ! h ŠÈ9 h 3‹
(x 8), tangent line
5(" h)# 5 h
œ lim
hÄ!
5 a1 2h h# b 5 h
œ lim
hÄ!
5h(2 h) h
œ 10, slope
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 3.1 Tangents and the Derivative at a Point c1 (2 h)# d (3) h
20. At x œ 2, y œ 3 Ê m œ lim
hÄ!
" #
21. At x œ 3, y œ
Ê m œ lim
"
h) 1
(3
#"
h1 h 1
22. At x œ 0, y œ 1 Ê m œ lim
hÄ!
hÄ!
2 (2 h) 2h(2 h)
œ lim
h
hÄ!
œ lim
hÄ!
(1) h
a1 4 4h h# b 3 h
hÄ!
hÄ!
h
œ lim
œ lim
h(4 h) h
œ 4, slope
œ "4 , slope
h Ä ! 2h(2 h)
(h 1) (h ") h(h 1)
œ lim
œ lim
2h
h Ä ! h(h 1)
œ 2, slope
c(x h)# 4(x h) 1d ax# 4x 1b h hÄ! a2xh h# 4hb lim œ lim (2x h 4) œ 2x h hÄ! hÄ!
23. At a horizontal tangent the slope m œ 0 Ê 0 œ m œ lim ax# 2xh h# 4x 4h 1b ax# 4x 1b h hÄ!
œ lim
œ
4;
2x 4 œ 0 Ê x œ 2. Then f(2) œ 4 8 1 œ 5 Ê (2ß 5) is the point on the graph where there is a horizontal tangent. c(x h)$ 3(x h)d ax$ 3xb h
24. 0 œ m œ lim
hÄ!
œ lim
hÄ!
3x# h 3xh# h$ 3h h
ax$ 3x# h 3xh# h$ 3x 3hb ax$ 3xb h
œ lim
hÄ!
œ lim a3x# 3xh h# 3b œ 3x# 3; 3x# 3 œ 0 Ê x œ 1 or x œ 1. Then hÄ!
f(1) œ 2 and f(1) œ 2 Ê ("ß 2) and ("ß 2) are the points on the graph where a horizontal tangent exists. 25. 1 œ m œ lim
"
h) 1
(x
x " 1
h
hÄ!
œ lim
hÄ!
(x 1) (x h 1) h(x 1)(x h 1)
h
œ lim
h Ä ! h(x 1)(x h 1)
œ (x " 1)#
Ê (x 1)# œ 1 Ê x# 2x œ 0 Ê x(x 2) œ 0 Ê x œ 0 or x œ 2. If x œ 0, then y œ 1 and m œ 1 Ê y œ 1 (x 0) œ (x 1). If x œ 2, then y œ 1 and m œ 1 Ê y œ 1 (x 2) œ (x 3). 26.
" 4
Èx h Èx
œ m œ lim œ lim
h
y œ 2 "4 (x 4) œ
hÄ!
f(2 h) f(2) h
x 4
Èx h Èx h
hÄ!
h Ä ! h ŠÈx h Èx‹
27. lim
œ lim
h
hÄ!
œ
" #È x
. Thus,
" 4
œ
†
Èx h Èx Èx h Èx
" #Èx
(x h) x
œ lim
h Ä ! h ŠÈx h Èx‹
Ê Èx œ 2 Ê x œ 4 Ê y œ 2. The tangent line is
1.
œ lim
hÄ!
a100 4.9(# h)# b a100 4.9(2)# b h
4.9 a4 4h h# b 4.9(4) h
œ lim
hÄ!
œ lim (19.6 4.9h) œ 19.6. The minus sign indicates the object is falling downward at a speed of 19.6 m/sec. hÄ!
28. lim
hÄ!
f(10 h) f(10) h
hÄ!
1(3 h)# 1(3)# h hÄ!
f(3 h) f(3) h hÄ!
œ lim
f(2 h) f(2) h hÄ!
œ lim
29. lim
30. lim
3(10 h)# 3(10)# h
œ lim
hÄ!
41 3
3 a20h h# b h
œ lim
hÄ!
œ 60 ft/sec.
1 c9 6h h# 9d h hÄ!
œ lim
(2 h)$ 431 (2)$ h
œ lim
41 3
hÄ!
31. At ax0 , mx0 bb the slope of the tangent line is lim
hÄ!
œ lim 1(6 h) œ 61 hÄ!
c12h 6h# h$ d h
œ lim
hÄ!
amax0 hb bb am x0 bb ax 0 h b x 0
41 3
c12 6h h# d œ 161
œ lim
hÄ!
mh h
The equation of the tangent line is y am x0 bb œ max x0 b Ê y œ mx b. 32. At x œ 4, y œ
1 È4 È
œ
" #
œ lim – 22hÈ44hh † hÄ!
and m œ lim
hÄ!
2 È4 h 2 È4 h —
È4
1 h
h
"#
œ lim – hÄ!
È4
1 h
h
"#
†
2È 4 h 2È 4 h —
œ lim m œ m. hÄ!
È
œ lim Š 22hÈ44hh ‹ hÄ!
hb h œ lim È 4 a4 È œ lim È 2h 4 hŠ2 4 h‹ 2h 4 hŠ2 È4 h‹ hÄ! hÄ!
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
95
96
Chapter 3 Differentiation 1 1 œ lim È œ È 1 È œ 16 2 4 hŠ2 È4 h‹ 2 4Š2 4‹ hÄ!
f(0 h) f(0) h hÄ!
33. Slope at origin œ lim
h# sin ˆ "h ‰ h hÄ!
œ lim
œ lim h sin ˆ "h ‰ œ 0 Ê yes, f(x) does have a tangent at hÄ!
the origin with slope 0. g(0 h) g(0) h
34. lim
hÄ!
œ lim
hÄ!
h sin ˆ "h ‰ h
œ lim sin h" . Since lim sin hÄ!
hÄ!
" h
does not exist, f(x) has no tangent at
the origin. 35.
lim
h Ä !c
f(0 h) f(0) h
lim f(0 h)h f(0) hÄ! 36.
œ lim c hÄ!
1 0 h
œ _, and lim b hÄ!
f(0 h) f(0) h
10 h
œ lim b hÄ!
œ _ Ê yes, the graph of f has a vertical tangent at the origin.
œ _, and lim b U(0 h)h U(0) œ lim b hÄ! hÄ! does not have a vertical tangent at (!ß ") because the limit does not exist. lim
h Ä !c
œ _. Therefore,
U(0 h) U(0) h
œ lim c hÄ!
01 h
11 h
œ 0 Ê no, the graph of f
37. (a) The graph appears to have a cusp at x œ 0.
(b)
lim c
hÄ!
f(0 h) f(0) h
œ lim c hÄ!
h#Î& 0 h
œ lim c hÄ!
" h$Î&
œ _ and lim b hÄ!
" h$Î&
œ _ Ê limit does not exist
Ê the graph of y œ x#Î& does not have a vertical tangent at x œ 0.
38. (a) The graph appears to have a cusp at x œ 0.
(b)
lim
h Ä !c
f(0 h) f(0) h
œ lim c hÄ!
h%Î& 0 h
œ lim c hÄ!
" h"Î&
œ _ and lim b hÄ!
" h"Î&
œ _ Ê limit does not exist
Ê y œ x%Î& does not have a vertical tangent at x œ 0.
39. (a) The graph appears to have a vertical tangent at x œ !.
(b)
lim
hÄ!
f(0 h) f(0) h
œ lim
hÄ!
h"Î& 0 h
œ lim
"
%Î& hÄ! h
œ _ Ê y œ x"Î& has a vertical tangent at x œ 0.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 3.1 Tangents and the Derivative at a Point 40. (a) The graph appears to have a vertical tangent at x œ 0.
(b)
lim
hÄ!
f(0 h) f(0) h
œ lim
hÄ!
h$Î& 0 h
"
œ lim
#Î& hÄ! h
œ _ Ê the graph of y œ x$Î& has a vertical tangent at x œ 0.
41. (a) The graph appears to have a cusp at x œ 0.
(b)
lim c
hÄ!
f(0 h) f(0) h
œ lim c hÄ!
4h#Î& 2h h
œ lim c hÄ!
4 h$Î&
2 œ _ and lim b hÄ!
4 h$Î&
#œ_
Ê limit does not exist Ê the graph of y œ 4x#Î& 2x does not have a vertical tangent at x œ 0.
42. (a) The graph appears to have a cusp at x œ 0.
(b)
lim
hÄ!
f(0 h) f(0) h
œ lim
hÄ!
h&Î$ 5h#Î$ h
œ lim h#Î$ hÄ!
5 h"Î$
œ 0 lim
y œ x&Î$ 5x#Î$ does not have a vertical tangent at x œ !.
5
"Î$ hÄ! h
does not exist Ê the graph of
43. (a) The graph appears to have a vertical tangent at x œ 1 and a cusp at x œ 0.
(b) x œ 1:
lim
hÄ!
(1 h)#Î$ (1 h 1)"Î$ " h
œ lim
hÄ!
(1 h)#Î$ h"Î$ " h
œ _
Ê y œ x#Î$ (x 1)"Î$ has a vertical tangent at x œ 1;
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
97
98
Chapter 3 Differentiation x œ 0:
lim
hÄ!
f(0 h) f(0) h
œ lim
hÄ!
h#Î$ (h 1)"Î$ (1)"Î$ h
" œ lim ’ h"Î$
hÄ!
(h ")"Î$ h
h" “
does not exist Ê y œ x#Î$ (x 1)"Î$ does not have a vertical tangent at x œ 0. 44. (a) The graph appears to have vertical tangents at x œ 0 and x œ 1.
(b) x œ 0:
lim
hÄ!
f(0 h) f(0) h
œ lim
hÄ!
h"Î$ (h 1)"Î$ (")"Î$ h
œ _ Ê y œ x"Î$ (x 1)"Î$ has a
vertical tangent at x œ 0;
x œ 1:
lim
hÄ!
f(1 h) f(1) h
œ lim
hÄ!
(1 h)"Î$ (" h 1)"Î$ 1 h
œ _ Ê y œ x"Î$ (x 1)"Î$ has a
vertical tangent at x œ ".
45. (a) The graph appears to have a vertical tangent at x œ 0.
(b)
lim b
hÄ!
f(0 h) f(0) h
œ lim b xÄ!
Èh 0 h
œ lim
"
h Ä ! Èh
È kh k 0
f(0 h) f(0) h
œ lim c œ lim c h hÄ! hÄ! Ê y has a vertical tangent at x œ 0. lim
h Ä !c
œ _; È kh k kh k
œ lim c hÄ!
" È kh k
œ_
46. (a) The graph appears to have a cusp at x œ 4.
(b)
lim b
f(4 h) f(4) h
œ lim b hÄ!
Èk4 (4 h)k 0 h
lim
f(4 h) f(4) h
œ lim c
Èk4 (4 h)k h
hÄ!
h Ä !c
hÄ!
œ lim b hÄ!
œ lim c hÄ!
È kh k h
È kh k lhl
œ lim b hÄ!
œ lim c hÄ!
" Èh
" È kh k
œ _;
œ _
Ê y œ È% x does not have a vertical tangent at x œ 4. 47-50. Example CAS commands: Maple: f := x -> x^3 + 2*x;x0 := 0; plot( f(x), x=x0-1/2..x0+3, color=black, title="Section 3.1, #47(a)" ); q := unapply( (f(x0+h)-f(x0))/h, h );
# part (a) # part (b)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 3.2 The Derivative as a Function L := limit( q(h), h=0 ); # part (c) sec_lines := seq( f(x0)+q(h)*(x-x0), h=1..3 ); # part (d) tan_line := f(x0) + L*(x-x0); plot( [f(x),tan_line,sec_lines], x=x0-1/2..x0+3, color=black, linestyle=[1,2,5,6,7], title="Section 3.1, #47(d)", legend=["y=f(x)","Tangent line at x=0","Secant line (h=1)", "Secant line (h=2)","Secant line (h=3)"] ); Mathematica: (function and value for x0 may change) Clear[f, m, x, h] x0 œ p; f[x_]: œ Cos[x] 4Sin[2x] Plot[f[x], {x, x0 1, x0 3}] dq[h_]: œ (f[x0+h] f[x0])/h m œ Limit[dq[h], h Ä 0] ytan: œ f[x0] m(x x0) y1: œ f[x0] dq[1](x x0) y2: œ f[x0] dq[2](x x0) y3: œ f[x0] dq[3](x x0) Plot[{f[x], ytan, y1, y2, y3}, {x, x0 1, x0 3}] 3.2 THE DERIVATIVE AS A FUNCTION 1. Step 1: f(x) œ 4 x# and f(x h) œ 4 (x h)# f(x h) f(x) h
Step 2:
œ
c4 (x h)# d a4 x# b h
œ
a4 x# 2xh h# b 4 x# h
œ
2xh h# h
œ
h(2x h) h
œ 2x h Step 3: f w (x) œ lim (2x h) œ 2x; f w ($) œ 6, f w (0) œ 0, f w (1) œ 2 hÄ!
2. F(x) œ (x 1)# 1 and F(x h) œ (x h 1)# " Ê Fw (x) œ lim œ lim
hÄ!
hÄ!
ax# 2xh h# 2x 2h 1 1b ax# 2x 1 1b h w
w
œ lim
w
œ 2(x 1); F (1) œ 4, F (0) œ 2, F (2) œ 2 3. Step 1: g(t) œ
" t#
and g(t h) œ "
Step 2:
"
# # g(t h) g(t) œ (t h)h t h 2t h) 2t h œ h( (t h)# t# h œ (t h)# t#
Step 3: gw (t) œ lim
2t h
# # h Ä ! (t h) t
4. k(z) œ
1 z #z
and k(z h) œ
œ œ
" 2z#
œ
Œ
2t t# †t#
1 (z h) 2(z h)
(" z)(z h) lim (1 z h)z #(z h)zh hÄ!
2xh h# 2h h
œ lim (2x h 2) hÄ!
" (t h)#
œ
œ
hÄ!
c(x h 1)# 1d c(x 1)# 1d h
t# (t h)# (t h)# †t#
h
œ
2 t$
t# at# 2th h# b (t h)# †t# †h
œ
œ
2th h# (t h)# t# h
2 ; gw (1) œ 2, gw (2) œ "4 , gw ŠÈ3‹ œ 3È 3
Ê kw (z) œ lim
hÄ!
Š
"
(z h) " z #(z h) #z ‹
# z h z# zh lim z z zh 2(z h)zh hÄ!
h
œ lim
h
h Ä ! 2(z h)zh
œ lim
"
h Ä ! #(z h)z
; kw (") œ "# , kw (1) œ "# , kw ŠÈ2‹ œ 4"
5. Step 1: p()) œ È3) and p() h) œ È3() h)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
99
100
Chapter 3 Differentiation
Step 2:
p() h) p()) h
œ
œ
È3() h) È3) h
3h h ŠÈ3) 3h È3)‹
Step 3: pw ()) œ lim
œ
ŠÈ3) 3h È3)‹ h
œ
3 È3) 3h È3)
3
œ
h Ä ! È3) 3h È3)
†
œ
3 È 3) È 3)
3 2È 3 )
ŠÈ3) 3h È3)‹ ŠÈ3) 3h È3)‹
; pw (1) œ
œ
(3) 3h) 3) h ŠÈ3) 3h È3)‹
, pw (3) œ "# , pw ˆ 32 ‰ œ
3 2È 3
3 #È2
È2s 2h 1 È2s 1 h hÄ!
6. r(s) œ È2s 1 and r(s h) œ È2(s h) 1 Ê rw (s) œ lim œ lim
ŠÈ2s h 1 È2s 1‹ h
hÄ!
œ lim
ŠÈ2s 2h 1 È2s 1‹
†
œ lim
2h
œ
" È2s 1
; rw (0) œ 1, rw (1) œ
2
" È3
, rw ˆ #" ‰ œ
hÄ!
6x# h 6xh# 2h$ h
hÄ!
9. s œ r(t) œ œ lim
t 2t1
Š
dr ds
œ
2 2È2s 1
2 ax$ 3x# h 3xh# h$ b 2x$ h hÄ!
2(x h)$ 2x$ h hÄ!
œ lim
œ lim
œ lim a6x# 6xh 2h# b œ 6x# hÄ!
œ lim
th 2(th)1
and r(t h) œ
(t b h)(2t b 1) c t(2t b 2h b 1) ‹ (2t b 2h b 1)(2t b 1)
h
hÄ!
œ lim
œ
2t# t 2ht h 2t# 2ht t (2t 2h 1)(2t 1)h hÄ! " " (2t 1)(2t 1) œ (2t 1)#
dv dt
œ lim
hÄ!
œ lim
10.
2 È2s 1 È2s 1
3 2 2 3 2 2 3 2 ˆas hb3 2as hb2 3‰ ˆs3 2s2 3‰ œ lim s 3s h 3sh h 2s h 4sh h 3 s 2s 3 h hÄ! hÄ! 2 2 3 2 hˆ3s2 3sh h2 4s h‰ lim 3s h 3sh hh 4sh h œ lim œ lim a3s2 3sh h2 4s hb œ 3s2 2s h hÄ! hÄ! hÄ!
8. r œ s3 2s2 3 Ê œ
dy dx
h a6x# 6xh 2h# b h
œ lim
œ
" È2
7. y œ f(x) œ 2x$ and f(x h) œ 2(x h)$ Ê œ lim
h Ä ! h ŠÈ2s 2h 1 È2s 1‹
h Ä ! È2s 2h 1 È2s 1
h Ä ! h ŠÈ2s 2h 1 È2s 1‹
(2s 2h 1) (2s 1)
œ lim
ŠÈ2s 2h 1 È2s 1‹
’(t h)
hÄ!
ht# h# t h h(t h)t hÄ!
œ lim
Œ
" “ ˆt " ‰ t h h
œ lim
11. p œ f(q) œ
t
" Èq 1
h
hÄ!
(t h)(2t 1) t(2t 2h 1) (2t 2h 1)(2t 1)h h
h Ä ! (2t 2h 1)(2t 1)h
œ lim
hÄ!
t# ht 1 h Ä ! (t h)t
and f(q h) œ œ lim
œ
h
t
" " t h h
t# 1 t#
" È(q h) 1
Ê
h Ä ! (2t 2h 1)(2t 1)
Š
œ lim
h(t
h)t t (t (t h)t
dp dq
h)
‹
h
hÄ!
œ1
"
œ lim
" t#
œ lim
Š È(q
hÄ!
"
h)
1
‹ Š Èq"
1
‹
h
Èq 1 Èq h 1
h Ä ! hÈ q h 1 È q 1
h
hÄ!
t ‰ Š 2(t bt bh)hb 1 ‹ ˆ 2t b 1
œ lim
ds dt
œ lim
œ lim
Èq b 1 c Èq b h b 1 Èq b h b 1 Èq b 1
Ê
œ
ˆÈ q 1 È q h 1 ‰ ˆ È q 1 È q h 1 ‰ 1) (q h 1) † ˆÈq 1 Èq h 1‰ œ lim hÈq h 1(qÈq 1 ˆÈ q 1 È q h 1 ‰ h Ä ! h Èq h 1 Èq 1 hÄ! h " lim œ lim Èq h 1 Èq 1 ˆÈq 1 Èq h 1‰ h Ä ! h È q h 1 È q 1 ˆÈ q 1 È q h 1 ‰ hÄ! " " œ È q 1 È q 1 ˆÈ q 1 È q 1 ‰ 2(q 1) Èq 1
dz dw
œ lim
œ lim œ
12.
Š È3(w " h) 2 h
hÄ!
œ lim
hÄ!
"
È3w 2 ‹
ŠÈ3w 2 È3w 3h 2‹ hÈ3w 3h 2 È3w 2
œ lim
œ lim
È3w 2 È3w 3h 2
h Ä ! hÈ3w 3h 2 È3w 2
†
ŠÈ3w2È3w3h2‹ ŠÈ3w 2 È3w 3h 2‹
3
h Ä ! È3w 3h 2 È3w 2 ŠÈ3w 2 È3w 3h 2‹
œ
œ
œ lim
(3w 2) (3w 3h 2)
h Ä ! hÈ3w 3h 2 È3w 2 ŠÈ3w 2 È3w 3h 2‹
3 È3w 2 È3w 2 ŠÈ3w 2 È3w 2‹
3 2(3w 2) È3w 2
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 3.2 The Derivative as a Function 13. f(x) œ x œ
x(x h)# 9x x# (x h) 9(x h) x(x h)h
œ
h(x# xh 9) x(x h)h
" #x
14. k(x) œ w
hÄ!
œ œ 16.
dy dx
œ
œ
x# 9 x#
œ
9 9 (x b h) “ ’x x “
’(x h)
h
x$ 2x# h xh# 9x x$ x# h 9x 9h x(x h)h
œ
x# xh 9 h Ä ! x(x h)
and k(x h) œ
x# h xh# 9h x(x h)h
œ
œ1
9 x#
; m œ f w (3) œ 0
Š # "x h k(x h) k(x) œ lim h h hÄ! hÄ! h " " lim œ lim (2 x)(# x h) œ (2 x)# ; h Ä ! h(2 x)(2 x h) hÄ! " 2 (x h)
Ê kw (x) œ lim
$ # # $ # # $ # c(t h)$ (t h)# d at$ t# b œ lim at 3t h 3th h b h at 2th h b t t h hÄ! hÄ! # # # # $ # lim 3t h 3th hh 2th h œ lim h a3t 3th h h 2t hb œ lim a3t# 3th hÄ! hÄ! hÄ! ¸ 3t# 2t; m œ ds œ 5 dt tœ"
#
" ‹ x
œ lim
ax b hb b 3 1 c ax b hb
œ lim
b3 1x c x
h
hÄ!
œ lim
17. f(x) œ
4h
b h b 3ba1 c xb c ax b 3ba1 c x c hb a1 c x c hba1 c xb h
œ lim
8 ŠÈx 2 Èx h 2‹ hÈ x h 2 È x 2
4
†
8 È(x h) 2
ŠÈx 2 Èx h 2‹
œ
8h hÈx h 2 Èx 2 ŠÈx 2 Èx h 2‹
œ
8 Èx 2 Èx 2 ŠÈx 2 Èx 2‹
œ
œ
œ
h# 2t hb
x h 3 x2 xh 3x x 3 x2 3x xh 3h h a1 x h b a 1 x b
4 ; dy ¹ a1 xb2 dx xœ2
f(x h) f(x) h
Ê
ŠÈx 2 Èx h 2‹
œ lim
hÄ!
h Ä ! a1 x hba1 xb
and f(x h) œ
8 Èx 2
ax
œ lim
hÄ!
h Ä ! ha1 x hba1 xb
œ
f(x h) f(x) h
Ê
9 (x h)
; f w (x) œ lim
" 16
k (2) œ ds dt
x# xh 9 x(x h)
œ
(# x) (2 x h) h(2 x)(2 x h)
œ lim
15.
and f(x h) œ (x h)
9 x
œ
œ
4 a3 b 2
4 9
È(x b h) c 2 Èx c 2 8
œ
8
h
8[(x 2) (x h 2)] hÈx h 2 Èx 2 ŠÈx 2 Èx h 2‹ 8
Ê f w (x) œ lim
h Ä ! Èx h 2 Èx 2 ŠÈx 2 Èx h 2‹
4 (x 2)Èx 2
; m œ f w (6) œ
4 4È 4
œ "# Ê the equation of the tangent
line at (6ß 4) is y 4 œ "# (x 6) Ê y œ "# x $ % Ê y œ "# x (. ˆ1 È4 (z h)‰ Š1 È4 z‹
18. gw (z) œ lim
h
hÄ!
œ
h
hÄ!
(4 z h) (4 z) lim h Ä ! h ŠÈ4 z h È4 z‹ " œ "# 2È 4 3 "# z $# # Ê w
ŠÈ4 z h È4 z‹
œ lim
œ
h lim h Ä ! h ŠÈ4 z h È4 z‹
†
ŠÈ4 z h È4 z‹ ŠÈ4 z h È4 z‹ "
œ lim
h Ä ! ŠÈ4 z h È4 z‹
œ
" 2È 4 z
m œ gw (3) œ
Ê the equation of the tangent line at ($ß #) is w 2 œ "# (z 3)
Êwœ
œ "# z (# .
19. s œ f(t) œ 1 3t# and f(t h) œ 1 3(t h)# œ 1 3t# 6th 3h# Ê a1 3t# 6th 3h# b a1 3t# b h hÄ!
œ lim
20. y œ f(x) œ " œ lim
" " x
21. r œ f()) œ hÄ!
h
h
hÄ!
œ lim
x
" x
2 È4 )
œ lim (6t 3h) œ 6t Ê hÄ!
and f(x h) œ 1 œ lim
h
h Ä ! x(x h)h
œ
œ lim
Ê
dy dx "
h Ä ! x(x h)
œ
œ lim
" x#
" 3
Ê
È œ
dy dx ¹x= 3
2 È4 () h)
Ê
dr d)
œ lim
hÄ!
f(t h) f(t) h
œ6
f(x h) f(x) h hÄ!
œ lim
œ lim
Š1
x
" ‹ Š1 " ‹ h x h
hÄ!
f() h) f()) œ lim h hÄ! hÄ! È È 2È4 ) #È% ) h Š2 % ) 2 4 ) h‹ lim † È Š2 4 ) #È4 ) h‹ h Ä ! hÈ 4 ) È 4 ) h
and f() h) œ
2È 4 ) 2È 4 ) h hÈ 4 ) È 4 ) h
" xh
ds ¸ dt t=c"
ds dt
È4 c ) c h È4 c ) 2
2
h
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
;
101
102
Chapter 3 Differentiation 4(% )) 4(% ) h)
œ lim
h Ä ! 2hÈ4 ) È4 ) h ŠÈ4 ) È4 ) h‹
œ
2 (4 )) Š2È4 )‹
œ
" (4 ))È4 )
Ê
dr ¸ d) )œ!
œ lim
2
h Ä ! È4 ) È4 ) h ŠÈ4 ) È% ) h‹
œ
" 8
22. w œ f(z) œ z Èz and f(z h) œ (z h) Èz h Ê œ lim
Šz h Èz h‹ ˆz Èz‰
hÄ!
h
œ 1 lim
(z h) z
h Ä ! h ŠÈz h Èz‹
h Èz h Èz h hÄ!
œ lim
œ 1 lim
"
h Ä ! Èz h Èz
"
dw dz
œ lim
hÄ!
œ lim –1 hÄ!
œ"
" 2È z
Ê
f(z h) f(z) h Èz h Èz h
dw ¸ dz zœ4
œ
†
ŠÈz h Èz‹ ŠÈz h Èz‹ —
5 4
"
fazb faxb a x #b a z # b xz " z #x # 23. f w axb œ zlim œ zlim œ zlim œ zlim œ zlim œ Äx zx Ä x zx Ä x az xbaz #bax #b Ä x az xbaz #bax #b Ä x az #bax #b ˆz2 3z 4‰ ˆx2 3x 4‰
" ax #b #
fazb faxb z 3z x 3x z x 3z 3x 24. f w axb œ zlim œ zlim œ zlim œ zlim zx zx zx Ä x zx Äx Äx Äx az xbaz xb 3‘ az xbaz xb 3az xb az xb 3‘ œ 2x 3 œ zlim œ zlim œ zlim zx zx Äx Äx Äx z
2
2
2
2
x
gazb gaxb z a x "b x a z " b z x " zc" x " 25. gw axb œ zlim œ zlim œ zlim œ zlim œ zlim œ Äx zx Äx zx Ä x az xbaz "bax "b Ä x az xbaz "bax "b Ä x az "bax "b g az b g a x b 26. gw axb œ zlim œ zlim Äx zx Äx
ˆ" Èz‰ˆ" Èx‰ zx
œ zlim Äx
Èz Èx zx
†
Èz Èx Èz Èx
" a x "b #
zx " œ zlim œ zlim œ Ä x az x bˆÈ z È x ‰ Ä x Èz Èx
" #È x
27. Note that as x increases, the slope of the tangent line to the curve is first negative, then zero (when x œ 0), then positive Ê the slope is always increasing which matches (b). 28. Note that the slope of the tangent line is never negative. For x negative, f#w (x) is positive but decreasing as x increases. When x œ 0, the slope of the tangent line to x is 0. For x 0, f#w (x) is positive and increasing. This graph matches (a). 29. f$ (x) is an oscillating function like the cosine. Everywhere that the graph of f$ has a horizontal tangent we expect f$w to be zero, and (d) matches this condition. 30. The graph matches with (c). 31. (a) f w is not defined at x œ 0, 1, 4. At these points, the left-hand and right-hand derivatives do not agree. For example, lim c xÄ!
f(x) f(0) x0
œ slope of line joining (%ß 0) and (!ß #) œ
" #
but lim b xÄ!
line joining (0ß 2) and ("ß 2) œ 4. Since these values are not equal, f w (0) œ
f(x) f(0) x0
f(0) lim f(x)x 0 xÄ!
(b)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
œ slope of
does not exist.
Section 3.2 The Derivative as a Function 32. (a)
103
(b) Shift the graph in (a) down 3 units
33.
(b) The fastest is between the 20th and 30th days; slowest is between the 40th and 50th days.
34. (a)
35. Answers may vary. In each case, draw a tangent line and estimate its slope. ‰F (a) i) slope ¸ 1.54 Ê dT ii) slope ¸ 2.86 Ê dt ¸ 1.54 hr iii) slope ¸ 0 Ê
dT dt
¸ 0‰ hrF
iv) slope ¸ 3.75
dT ‰F dt ¸ 2.86 hr ‰F Ê dT dt ¸ 3.75 hr
(b) The tangent with the steepest positive slope appears to occur at t œ 6 Ê 12 p.m. and slope ¸ 7.27 Ê The tangent with the steepest negative slope appears to occur at t œ 12 Ê 6 p.m. and ‰F slope ¸ 8.00 Ê dT dt ¸ 8.00 hr (c)
36. Answers may vary. In each case, draw a tangent line and estimate the slope. lb (a) i) slope ¸ 20.83 Ê dW ii) slope ¸ 35.00 Ê dt ¸ 20.83 month iii) slope ¸ 6.25 Ê
dW dt
dW dt
lb ¸ 35.00 month
lb ¸ 6.25 month
(b) The tangentwith the steepest positive slope appears to occur at t œ 2.7 months. and slope ¸ 7.27 lb Ê dW dt ¸ 53.13 month
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
dT dt
¸ 7.27‰ hrF .
104
Chapter 3 Differentiation
(c)
37. Left-hand derivative: For h 0, f(0 h) œ f(h) œ h# (using y œ x# curve) Ê œ lim c hÄ!
h# 0 h
œ lim c h œ 0; hÄ!
Right-hand derivative: For h 0, f(0 h) œ f(h) œ h (using y œ x curve) Ê œ lim b hÄ! Then lim c hÄ!
h0 h
lim
h Ä !c
œ lim b 1 œ 1; hÄ!
f(0 h) f(0) h
Á lim b hÄ!
f(0 h) f(0) h
lim
h Ä !b
œ lim c 0 œ 0; hÄ!
f(1 h) f(1) h
lim
h Ä !c
Right-hand derivative: When h !, 1 h 1 Ê f(1 h) œ 2(1 h) œ 2 2h Ê
Then lim c hÄ!
(2 2h)2 h
œ lim b hÄ!
f(1 h) f(1) h
2h h
hÄ!
È1 h " h
œ lim c
lim
h Ä !b
ŠÈ1 h "‹ h
hÄ!
†
ŠÈ1 h "‹ ŠÈ1 h 1‹
œ lim c hÄ!
lim
h Ä !c
Then lim c hÄ!
(2h 1) " h f(1 h) f(1) h
40. Left-hand derivative:
lim
h Ä !c
Right-hand derivative: œ lim b hÄ! Then lim c hÄ!
h h(1 h)
œ lim b 2 œ 2; hÄ!
f(1 h) f(") h
lim b
hÄ!
œ lim b hÄ!
f(1 h) f(1) h
f(1 h) f(1) h
Á lim b hÄ!
(1 h) " h ŠÈ1 h "‹
œ lim c hÄ!
Á lim b hÄ!
" È1 h 1
lim
h Ä !b
Ê the derivative f w (1) does not exist. (1 h) " h
œ lim c hÄ!
f(1 h) f(") h " 1h
f(1 h) f(1) h
f(" h) f(1) h
Right-hand derivative: When h 0, 1 h 1 Ê f(1 h) œ 2(1 h) 1 œ 2h 1 Ê œ lim b hÄ!
œ lim c 1 œ 1; hÄ!
Š 1 " h "‹
œ lim b hÄ!
h
œ lim b hÄ!
Š
1 (1 h) 1 h ‹
h
œ 1; f(1 h) f(1) h
Ê the derivative f w (1) does not exist.
41. f is not continuous at x œ 0 since lim faxb œ does not exist and fa0b œ 1 xÄ!
42. Left-hand derivative: Right-hand derivative: Then lim c hÄ!
g(h) g(0) h
lim
h Ä !c
g(h) g(0) h
lim
h Ä !b
œ lim b hÄ!
22 h
Ê the derivative f w (1) does not exist.
39. Left-hand derivative: When h 0, 1 h 1 Ê f(1 h) œ È1 h Ê œ lim c
œ lim c hÄ!
œ lim b 2 œ 2; hÄ!
f(1 h) f(1) h
Á lim b hÄ!
f(0 h) f(0) h
Ê the derivative f w (0) does not exist.
38. Left-hand derivative: When h !, 1 h 1 Ê f(1 h) œ 2 Ê
œ lim b hÄ!
f(0 h) f(0) h
œ lim c hÄ!
g(h) g(0) h
œ lim b hÄ!
g(h) g(0) h
h1Î3 0 h h
2Î3
œ lim c hÄ!
0 h
1 h2Î3
œ lim b hÄ!
œ +_;
1 h1Î3
œ +_;
œ _ Ê the derivative gw (0) does not exist.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
œ #" ;
f("h)f(1) h
Section 3.2 The Derivative as a Function 43. (a) The function is differentiable on its domain $ Ÿ x Ÿ 2 (it is smooth) (b) none (c) none 44. (a) The function is differentiable on its domain # Ÿ x Ÿ 3 (it is smooth) (b) none (c) none 45. (a) The function is differentiable on $ Ÿ x 0 and ! x Ÿ 3 (b) none (c) The function is neither continuous nor differentiable at x œ 0 since lim c f(x) Á lim b f(x) xÄ! xÄ! 46. (a) f is differentiable on # Ÿ x 1, " x 0, 0 x 2, and 2 x Ÿ 3 (b) f is continuous but not differentiable at x œ 1: lim f(x) œ 0 exists but there is a corner at x œ 1 since x Ä 1
œ 3 and lim b f(" h)h f(1) œ 3 Ê f w (1) does not exist hÄ! hÄ! (c) f is neither continuous nor differentiable at x œ 0 and x œ 2: at x œ 0, lim c f(x) œ 3 but lim b f(x) œ 0 Ê lim f(x) does not exist; lim c
f(1 h) f(") h
xÄ!
xÄ0
xÄ!
at x œ 2, lim f(x) exists but lim f(x) Á f(2) xÄ#
xÄ#
47. (a) f is differentiable on " Ÿ x 0 and 0 x Ÿ 2 (b) f is continuous but not differentiable at x œ 0: lim f(x) œ 0 exists but there is a cusp at x œ 0, so f(0 h) f(0) h hÄ!
f w (0) œ lim
xÄ!
does not exist
(c) none 48. (a) f is differentiable on $ Ÿ x 2, 2 x 2, and 2 x Ÿ 3 (b) f is continuous but not differentiable at x œ 2 and x œ 2: there are corners at those points (c) none 49. (a) f w (x) œ lim
hÄ!
f(x h) f(x) h
œ lim
hÄ!
(x h)# ax# b h
œ lim
hÄ!
x# 2xh h# x# h
œ lim (2x h) œ 2x hÄ!
(b)
(c) yw œ 2x is positive for x 0, yw is zero when x œ 0, yw is negative when x 0 (d) y œ x# is increasing for _ x 0 and decreasing for ! x _; the function is increasing on intervals where yw 0 and decreasing on intervals where yw 0 f(x h) f(x) h hÄ!
50. (a) f w (x) œ lim
œ lim
hÄ!
Š xc" h h
1 x ‹
œ lim
hÄ!
x (x h) x(x h)h
œ lim
"
h Ä ! x(x h)
œ
" x#
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
105
106
Chapter 3 Differentiation
(b)
(c) yw is positive for all x Á 0, yw is never 0, yw is never negative (d) y œ "x is increasing for _ x 0 and ! x _ 51. (a) Using the alternate formula for calculating derivatives: f w (x) œ zlim Äx œ
$ $ lim z x z Ä x 3(z x)
œ
az# zx x# b lim (z x)3(z x) zÄx
œ
# # lim z zx3 x zÄx
f(z) f(x) zx
#
w
$
Š z3
œ zlim Äx
œ x Ê f (x) œ x
x$ 3 ‹
zx
#
(b)
(c) yw is positive for all x Á 0, and yw œ 0 when x œ 0; yw is never negative (d) y œ
x$ 3
is increasing for all x Á 0 (the graph is horizontal at x œ 0) because y is increasing where yw 0; y is
never decreasing
52. (a) Using the alternate form for calculating derivatives: f w (x) œ zlim Äx œ
% % lim z x z Ä x 4(z x)
œ
$ xz# x# z x$ b lim (z x) az 4(z x) zÄx
œ
f(z) f(x) zx
$ # # $ lim z xz 4 x z x zÄx
œ zlim Äx $
Œ
z% 4
x% 4
zx
w
œ x Ê f (x) œ x$
(b)
(c) yw is positive for x 0, yw is zero for x œ 0, yw is negative for x 0 (d) y œ
x% 4
is increasing on 0 x _ and decreasing on _ x 0
# # # a2(x h)# 13(x h) 5b a2x# 13x 5b œ lim 2x 4xh 2h 13x h13h 5 2x 13x 5 h hÄ! hÄ! # lim 4xh 2hh 13h œ lim (4x 2h 13) œ 4x 13, slope at x. The slope is 1 when hÄ! hÄ!
53. yw œ lim œ
4x 13 œ "
Ê 4x œ 12 Ê x œ 3 Ê y œ 2 † 3# 13 † 3 5 œ 16. Thus the tangent line is y 16 œ (1)(x 3) Ê y œ x "$ and the point of tangency is (3ß 16). 54. For the curve y œ Èx, we have yw œ lim
hÄ!
œ lim
"
h Ä ! Èx h Èx
œ
" #Èx
ŠÈx h Èx‹ h
†
ŠÈx h Èx‹ ŠÈx h Èx‹
œ lim
(x h) x
h Ä ! ŠÈx h Èx‹ h
. Suppose ˆ+ß Èa‰ is the point of tangency of such a line and ("ß !) is the point
on the line where it crosses the x-axis. Then the slope of the line is
Èa 0 a (1)
œ
Èa a1
which must also equal
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 3.2 The Derivative as a Function " ; 2È a
using the derivative formula at x œ a Ê
exist: its point of tangency is ("ß "), its slope is
Èa a1
œ
" #È a
œ
" Ê 2a œ a 1 Ê a œ 1. #Èa " # ; and an equation of the line is
Thus such a line does y1œ
" #
(x 1)
Ê y œ "# x "# . 55. Yes; the derivative of f is f w so that f w (x! ) exists Ê f w (x! ) exists as well. 56. Yes; the derivative of 3g is 3gw so that gw (7) exists Ê 3gw (7) exists as well. 57. Yes, lim
g(t)
t Ä ! h(t)
can exist but it need not equal zero. For example, let g(t) œ mt and h(t) œ t. Then g(0) œ h(0)
œ 0, but lim
g(t)
t Ä ! h(t)
œ lim
tÄ!
mt t
œ lim m œ m, which need not be zero. tÄ!
58. (a) Suppose kf(x)k Ÿ x# for " Ÿ x Ÿ 1. Then kf(0)k Ÿ 0# Ê f(0) œ 0. Then f w (0) œ lim œ lim
hÄ!
f(h) 0 h
œ lim
hÄ!
f(h) h .
For khk Ÿ 1, h# Ÿ f(h) Ÿ h# Ê h Ÿ
hÄ!
f(h) h
f(0 h) f(0) h
Ÿ h Ê f w (0) œ lim
hÄ!
f(h) h
œ0
by the Sandwich Theorem for limits. (b) Note that for x Á 0, kf(x)k œ ¸x# sin "x ¸ œ kx# k ksin xk Ÿ kx# k † 1 œ x# (since " Ÿ sin x Ÿ 1). By part (a), f is differentiable at x œ 0 and f w (0) œ 0.
59. The graphs are shown below for h œ 1, 0.5, 0.1. The function y œ y œ Èx so that
" #È x
œ lim
hÄ!
Èx h Èx h
" 2È x
. The graphs reveal that y œ
is the derivative of the function
Èx h Èx h
gets closer to y œ
" #È x
as h gets smaller and smaller.
60. The graphs are shown below for h œ 2, 1, 0.5. The function y œ 3x# is the derivative of the function y œ x$ so that 3x# œ lim
hÄ!
(xh)$ x$ h
. The graphs reveal that y œ
(xh)$ x$ h
gets closer to y œ 3x# as h
gets smaller and smaller.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
107
108
Chapter 3 Differentiation
61. The graphs are the same. So we know that for f(x) œ kxk , we have f w (x) œ
kx k x
.
62. Weierstrass's nowhere differentiable continuous function.
63-68. Example CAS commands: Maple: f := x -> x^3 + x^2 - x; x0 := 1; plot( f(x), x=x0-5..x0+2, color=black, title="Section 3.2, #63(a)" ); q := unapply( (f(x+h)-f(x))/h, (x,h) ); # (b) L := limit( q(x,h), h=0 ); # (c) m := eval( L, x=x0 ); tan_line := f(x0) + m*(x-x0); plot( [f(x),tan_line], x=x0-2..x0+3, color=black, linestyle=[1,7], title="Section 3.2 #63(d)", legend=["y=f(x)","Tangent line at x=1"] ); Xvals := sort( [ x0+2^(-k) $ k=0..5, x0-2^(-k) $ k=0..5 ] ): # (e) Yvals := map( f, Xvals ): evalf[4](< convert(Xvals,Matrix) , convert(Yvals,Matrix) >); plot( L, x=x0-5..x0+3, color=black, title="Section 3.2 #63(f)" ); Mathematica: (functions and x0 may vary) (see section 2.5 re. RealOnly ): 1-x; a := 0; b := 1; N :=[ 4, 10, 20, 50 ]; P := [seq( RiemannSum( f(x), x=a..b, partition=n, method=random, output=plot ), n=N )]: display( P, insequence=true ); 95-98. Example CAS commands: Maple: with( Student[Calculus1] ); f := x -> sin(x); a := 0; b := Pi; plot( f(x), x=a..b, title="#95(a) (Section 5.3)" ); N := [ 100, 200, 1000 ]; # (b) for n in N do Xlist := [ a+1.*(b-a)/n*i $ i=0..n ]; Ylist := map( f, Xlist ); end do: for n in N do # (c) Avg[n] := evalf(add(y,y=Ylist)/nops(Ylist)); end do; avg := FunctionAverage( f(x), x=a..b, output=value ); evalf( avg ); FunctionAverage(f(x),x=a..b,output=plot); # (d) fsolve( f(x)=avg, x=0.5 ); fsolve( f(x)=avg, x=2.5 ); fsolve( f(x)=Avg[1000], x=0.5 ); fsolve( f(x)=Avg[1000], x=2.5 ); 89-98. Example CAS commands: Mathematica: (assigned function and values for a, b, and n may vary) Sums of rectangles evaluated at left-hand endpoints can be represented and evaluated by this set of commands Clear[x, f, a, b, n] {a, b}={0, 1}; n =10; dx = (b a)/n; f = Sin[x]2 ; xvals =Table[N[x], {x, a, b dx, dx}]; yvals = f /.x Ä xvals; boxes = MapThread[Line[{{#1,0},{#1, #3},{#2, #3},{#2, 0}]&,{xvals, xvals dx, yvals}]; Plot[f, {x, a, b}, Epilog Ä boxes]; Sum[yvals[[i]] dx, {i, 1, Length[yvals]}]//N Sums of rectangles evaluated at right-hand endpoints can be represented and evaluated by this set of commands. Clear[x, f, a, b, n] {a, b}={0, 1}; n =10; dx = (b a)/n; f = Sin[x]2 ;
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
281
282
Chapter 5 Integration
xvals =Table[N[x], {x, a dx, b, dx}]; yvals = f /.x Ä xvals; boxes = MapThread[Line[{{#1,0},{#1, #3},{#2, #3},{#2, 0}]&,{xvals dx,xvals, yvals}]; Plot[f, {x, a, b}, Epilog Ä boxes]; Sum[yvals[[i]] dx, {i, 1,Length[yvals]}]//N Sums of rectangles evaluated at midpoints can be represented and evaluated by this set of commands. Clear[x, f, a, b, n] {a, b}={0, 1}; n =10; dx = (b a)/n; f = Sin[x]2 ; xvals =Table[N[x], {x, a dx/2, b dx/2, dx}]; yvals = f /.x Ä xvals; boxes = MapThread[Line[{{#1,0},{#1, #3},{#2, #3},{#2, 0}]&,{xvals dx/2, xvals dx/2, yvals}]; Plot[f, {x, a, b},Epilog Ä boxes]; Sum[yvals[[i]] dx, {i, 1, Length[yvals]}]//N 5.4 THE FUNDAMENTAL THEOREM OF CALCULUS 1.
'c (2x 5) dx œ cx# 5xd#! œ a0# 5(0)b a(2)# 5(2)b œ 6
2.
'c ˆ5 x# ‰ dx œ ’5x x4 “ %
0
2
4
3.
#
$
3
'
2
0
xax 3b dx œ
'
2
0
5.
3
'c ax2 2x 3b dx œ ’ x3
3
1
'
4
0
Š3x
x$ 4‹
#
dx œ ’ 3x#
'c ax$ 2x 3b dx œ ’ x4 2
6.
%
2
7.
'
8.
' '
1Î3
9.
'
1
10.
'
31Î4
11.
'
1Î3
12.
1
% x% 16 “ !
1
3
œ Š a23b
œ
3 a2 b 2 2 ‹
133 4
3
Š a03b
3
1 #
# #
3 a0 b 2 2 ‹
œ 10 3
œ Š a13b a1b# 3a1b‹ Š (31) (1)# 3(1)‹ œ
œ Š 3(4) #
x# 3x“
2 3x2 2 “!
(3)# 4 ‹
4% 16 ‹
3
#
Š 3(0) #
(0)% 16 ‹
œ8 %
œ Š 24 2# 3(2)‹ Š (42) (2)# 3(2)‹ œ 12 %
"
$
ˆx# Èx‰ dx œ ’ x3 32 x$Î# “ œ ˆ "3 32 ‰ 0 œ 1
32
1
$#
x'Î& dx œ 5x"Î& ‘ " œ ˆ #5 ‰ (5) œ
0
1Î$
2 sec# x dx œ [2 tan x]!
5 #
œ ˆ2 tan ˆ 13 ‰‰ (2 tan 0) œ 2È3 0 œ 2È3
a1 cos xb dx œ [x sin x]1! œ a1 sin 1b a0 sin 0b œ 1
1Î4
0
x# 3x“
Š5(3)
!
0
0
4# 4‹
ax2 3xb dx œ ’ x3
1
4.
œ Š5(4)
$1Î%
csc ) cot ) d) œ [csc )]1Î% œ ˆcsc ˆ 341 ‰‰ ˆcsc ˆ 14 ‰‰ œ È2 ŠÈ2‹ œ 0 1Î$
4 sec u tan u du œ [4 sec u]!
œ 4 sec ˆ 13 ‰ 4 sec 0 œ 4(2) 4(1) œ 4
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
20 3
Section 5.4 The Fundamental Theorem of Calculus 13.
14.
'
0
" cos 2t # 1Î2
'
dt œ
0
ˆ"
1Î2 #
2t 'c ÎÎ " cos dt œ ' # 1 3
1Î3
1 3
1Î3 #
œ ˆ "# ˆ 13 ‰
'
1Î4
15.
'
1Î6
16.
0
0
" 4
" #
cos 2t‰ dt œ "# t
ˆ"
" #
'
1Î4
0
sin 2t‘ 1Î# œ ˆ "# (0)
cos 2t‰ dt œ "# t
sin 2 ˆ 13 ‰‰ ˆ #" ˆ 13 ‰
tan# x dx œ
!
" 4
" 4
1Î6
0
sin 2 ˆ 13 ‰‰ œ
1 6
" 4
sin 231
1 6
" 4
sin ˆ 321 ‰ œ
1 3
œ ˆtan ˆ 14 ‰ 14 ‰ atan a0b 0b œ 1
asec2 x 2sec x tan x tan2 xbdx œ
'
1Î6
0
'
1Î8
1 Î8
sin 2x dx œ ’ "# cos 2x“
!
0
œ ˆ "# cos 2ˆ 18 ‰‰ ˆ "# cos 2a0b‰ œ
a2sec2 x 2sec x tan x 1bdx 1 6
2
2 È 2 4
1
#
1 3
1 3
œ Š4 tan ˆ 14 ‰
1 ˆ 14 ‰ ‹
Š4 tan ˆ 13 ‰
1 ˆ 13 ‰ ‹
œ (4(1) 4) Š4 ŠÈ3‹ 3‹ œ 4È3 3
19.
'"" (r 1)# dr œ '"" ar# 2r 1b dr œ ’ r3 r# r“ " œ Š (31)
20.
'È (t 1) at# 4b dt œ 'È at$ t# 4t 4b dt œ ’ t4 t3 2t# 4t“ÈÈ$
$
"
È3
È3
3
œ
%
ŠÈ3‹ 4
$
ŠÈ3‹
2 ŠÈ3‹ 4È3
3
'È" Š u#
22.
'cc y y 2y dy œ 'cc ay2 2y2 b dy œ ’ y3
(
2
3
'
È2
1
$
(1)# (1)‹ Š 13 1# 1‹ œ 38
$
%
#
21.
1
$
3
%
23.
È3 4
'cÎ Î% ˆ4 sec# t t1 ‰ dt œ ' Î Î% a4 sec# t 1t# b dt œ 4 tan t 1t ‘ 11Î%Î$ 1
18.
sin 2 ˆ 1# ‰‰ œ 14
1 4
œ [2 tan x 2sec x x]1!Î6 œ ˆ2 tanˆ 16 ‰ 2secˆ 16 ‰ ˆ 16 ‰‰ a2 tan 0 2sec 0 0b œ 2È3 17.
" 4
sin 2t‘ 1Î$
1 Î4
'
sin 2(0)‰ ˆ "# ˆ 1# ‰
1Î$
" 4
asec# x 1bdx œ [tan x x]!
asec x tan xb2 dx œ
" 4
" u& ‹
du œ
'È" Š u#
(
2
)
u u& ‹ du œ ’ 16
1
5
3
3
3
s# È s s#
ds œ
'
1
È2
ŠÈ3‹ 4
$
ŠÈ3‹ 3
$ #
2 ŠÈ3‹ 4 ŠÈ3‹ œ 10È3 )
" " 4u% “È#
)
1 œ Š 16
c1
" 4(1)% ‹
ŠÈ2‹ 16
"
œ Š ac31b ac21b ‹ Š ac33b ac23b ‹ œ c3 3
2y1 “
ˆ1 s$Î# ‰ ds œ ’s
È# 2 “ Ès "
œ È 2
3
2 É È2
Š1
2 È1 ‹
%
4 ŠÈ2‹
œ4 3
22 3
œ È2 2$Î% 1
4 œ È2 È 81
24.
'
8
ˆx1Î3 1‰ˆ2 x2Î3 ‰ x1Î3 1
dx œ
'
8
2x1Î3 x 2 x2Î3 x1Î3 1
dx œ
'
1
8
ˆ2 x2Î3 2x1Î3 x1Î3 ‰ dx œ
2x 35 x5Î3 3x2Î3 34 x4Î3 ‘3 œ Š2a8b 35 a8b5Î3 3a8b2Î3 34 a8b4Î3 ‹ Š2a1b 35 a1b5Î3 3a1b2Î3 34 a1b4Î3 ‹ 1 œ 137 20 25.
'
1
sin 2x 1Î2 2 sin x
dx œ
'
1
2 sin x cos x 1Î2 2 sin x
dx œ
'
1
1Î2
1
cos x dx œ ’sin x“
1Î2
œ asin a1bb ˆsin ˆ 12 ‰‰ œ 1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
283
284 26.
Chapter 5 Integration
'
1Î3
0
'
œ
'
acos x sec xb2 dx œ 1Î3
0
ˆ 12 cos 2x
5 2
1Î3
0
'
acos2 x 2 sec2 xbdx œ
1Î3
0
ˆ cos 2x2 1 2 sec2 x‰dx
1Î3
sec2 x‰dx œ ’ 14 sin 2x 52 x tan x“
!
œ ˆ 14 sin 2ˆ 13 ‰ 52 ˆ 13 ‰ tanˆ 13 ‰‰ ˆ 14 sin 2a0b 52 a0b tana0b‰ œ
'c% kxk dx œ ' !% kxk dx '! 4
27.
28.
'
1
" ! #
acos x kcos xk b dx œ 1 #
œ sin
29. (a)
!
d dx
30. (a)
'
(b)
d dx
31. (a)
'
(b)
d dt
32. (a)
'
'
1Î#
!
" # (cos
' !% x dx '!
x cos x) dx
4
#
x dx œ ’ x# “
'
1
" 1Î# #
!
#
%
%
#
’ x# “ œ Š 0# !
(cos x cos x) dx œ
'
1Î#
!
(4)# # ‹
Èx
cos t dt œ [sin t]! œ sin Èx sin 0 œ sin Èx Ê
Èx
'
Œ
!
sin x
d dx
Œ
'
Èx
!
cos t dt œ
d ˆÈ ‰‰ cos t dt œ ˆcos Èx‰ ˆ dx x œ ˆcos Èx ‰ ˆ "# x"Î# ‰ œ
3t# dt œ ct$ d "
sin x
1
'
Œ t%
sin x
1
Œ'
t%
!
tan )
!
d d)
œ sin$ x 1 Ê
d dx
Œ
'
sin x
1
3t# dt œ
d dx
d dx
ˆsin Èx‰ œ cos Èx ˆ "# x"Î# ‰
cos Èx 2È x
asin$ x 1b œ 3 sin# x cos x
'
t%
!
t%
u"Î# du œ 23 u$Î# ‘ ! œ
2 3
at% b
$Î#
0œ
2 ' 3 t
Ê
d dt
Œ'
Œ
'
t%
!
Èu du œ
ˆ 23 t' ‰ œ 4t&
d dt
Èu du œ Èt% ˆ dtd at% b‰ œ t# a4t$ b œ 4t&
) sec# y dy œ [tan y]tan œ tan (tan )) 0 œ tan (tan )) Ê !
'
Œ
!
tan )
d d)
tan )
!
sec# y dy œ
d d)
(tan (tan )))
sec# y dy œ asec# (tan ))b ˆ dd) (tan ))‰ œ asec# (tan ))b sec# )
33. y œ
'
35. y œ
'È sin t# dt œ '
x
!
È1 t# dt Ê
'
x2
2
sin t3 dt Ê
'
2
x
34. y œ
sin t# dt Ê
œx†
dy dx
'
x2
dy dx
œ
d dx Œ
2
'
1
x
" t
dt Ê
dy dx
œ
" x
,x0
# d ˆÈ ‰‰ œ Šsin ˆÈx‰ ‹ ˆ dx x œ (sin x) ˆ "# x"Î# ‰ œ 2sinÈxx
sin t3 dt 1 †
'
x2
2
sin t3 dt œ x † sin ax# b
3 d # dx ax b
'
2
x2
sin t3 dt
sin t3 dt x
#
#
dy dx
œ È1 x#
x2
'c t t 4 dt ' 1
Èx
!
x
œ 2x# sin x6 37. y œ
dy dx
!
36. y œ x
œ 16
1Î#
œ asec# (tan ))b sec# ) (b)
0# #‹
cos x dx œ [sin x]!
d 3t# dt œ a3 sin# xb ˆ dx (sin x)‰ œ 3 sin# x cos x
Èu du œ
!
#
Š 4#
cos Èx 2È x
œ (b)
kxk dx œ
9È 3 8
sin 0 œ 1
Èx
'
4
51 6
3
t# t# 4
dt Ê
x# x# 4
x# x# 4
œ0
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 5.4 The Fundamental Theorem of Calculus
'
38. y œ Œ
x
0
39. y œ
'
40. y œ
'
sin x
dt È1 t#
!
tan x
dt 1 t#
!
, kxk Ê
'
3
10
at3 "b dt Ê
dy dx
1 #
dy dx
Ê
œ 3Œ
dy dx
0
x
" È1 sin# x
œ
'
10
d at3 "b dt dx Œ
d ˆ dx (sin x)‰ œ
0
x
10
10
'
at3 "b dt œ 3ax3 "b Œ
" Ècos# x
(cos x) œ
cos x kcos xk
œ
cos x cos x
" d ‰ ˆ dx œ ˆ 1 tan (tan x)‰ œ ˆ sec"# x ‰ asec# xb œ 1 #x
'$# ax# 2xbdx '#! ax# 2xbdx '!# ax# 2xbdx $
œ ’ x3 x# “
# $
$
’ x3 x# “
!
$
#
$
’ x3 x# “
#
!
$
œ ŠŠ (32) (2)# ‹ Š (33) (3)# ‹‹ $
ŠŠ 03 0# ‹ Š (32) (2)# ‹‹ $
$
$
ŠŠ 23 2# ‹ Š 03 0# ‹‹ œ
28 3
42. 3x# 3 œ 0 Ê x# œ 1 Ê x œ „ 1; because of symmetry about the y-axis, Area œ 2 Œ
'!" a3x# 3bdx '"# a3x# 3bdx
"
#
2 Š cx$ 3xd ! cx$ 3xd " ‹ œ 2 c aa1$ 3(1)b a0$ 3(0)bb aa2$ 3(2)b a1$ 3(1)bd œ 2(6) œ 12
43. x$ 3x# 2x œ 0 Ê x ax# 3x 2b œ 0 Ê x(x 2)(x 1) œ 0 Ê x œ 0, 1, or 2; Area œ
'!" ax$ 3x# 2xbdx '"# ax$ 3x# 2xbdx "
%
%
œ ’ x4 x$ x# “ ’ x4 x$ x# “ !
œ
% Š 14
$
#
1 1 ‹ %
% Š 04
$
# "
#
0 0 ‹ %
’Š 24 2$ 2# ‹ Š 14 1$ 1# ‹“ œ
10
at3 "b dt
œ 1 since kxk
41. x# 2x œ 0 Ê x(x 2) œ 0 Ê x œ 0 or x œ 2; Area œ
0
x
" #
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
1 #
285
286
Chapter 5 Integration
44. x"Î$ x œ 0 Ê x"Î$ ˆ1 x#Î$ ‰ œ 0 Ê x"Î$ œ 0 or 1 x#Î$ œ 0 Ê x œ 0 or 1 œ x#Î$ Ê x œ 0 or 1 œ x# Ê x œ 0 or „ 1; Area œ œ
'c! ˆx"Î$ x‰dx '!" ˆx"Î$ x‰dx '") ˆx"Î$ x‰dx "
%Î$
’ 34
x
! x# # “ "
œ ’Š 34 (0)%Î$
’ 34 x%Î$
0# #‹
" x# # “!
’ 43 x%Î$ (1)# # ‹“
Š 34 (1)%Î$
’Š 34 (1)%Î$
1# #‹
Š 34 (0)%Î$
0# # ‹“
’Š 34 (8)%Î$
8# #‹
Š 34 (1)%Î$
1# # ‹“
œ
" 4
" 4
ˆ2!
$ 4
#" ‰ œ
) x# # “"
83 4
45. The area of the rectangle bounded by the lines y œ 2, y œ 0, x œ 1, and x œ 0 is 21. The area under the curve y œ 1 cos x on [0ß 1] is
'!
1
(1 cos x) dx œ [x sin x]!1 œ (1 sin 1) (0 sin 0) œ 1. Therefore the area of
the shaded region is 21 1 œ 1. 46. The area of the rectangle bounded by the lines x œ 16 , x œ " #
51 6 ,
y œ sin
ˆ 561 16 ‰ œ 13 . The area under the curve y œ sin x on 16 ß 561 ‘ is
œ ˆcos
51 ‰ 6
È3 # ‹
ˆcos 16 ‰ œ Š
È3 #
'
1 6
œ
51Î6
1Î6
" #
œ sin
51 6
, and y œ 0 is &1Î'
sin x dx œ [cos x]1Î'
œ È3. Therefore the area of the shaded region is È3 13 .
47. On 14 ß 0‘ : The area of the rectangle bounded by the lines y œ È2, y œ 0, ) œ 0, and ) œ 14 is È2 ˆ 14 ‰ œ
1È2 4
. The area between the curve y œ sec ) tan ) and y œ 0 is
'c
!
1Î4
sec ) tan ) d) œ [sec )]!1Î%
œ (sec 0) ˆsec ˆ 14 ‰‰ œ È2 1. Therefore the area of the shaded region on 14 ß !‘ is
1È2 4
On 0ß 14 ‘ : The area of the rectangle bounded by ) œ 14 , ) œ 0, y œ È2, and y œ 0 is È2 ˆ 14 ‰ œ under the curve y œ sec ) tan ) is of the shaded region on !ß 14 ‘ is È
'
1Î4
!
1È2 4
1Î%
sec ) tan ) d) œ [sec )]!
œ sec
1 4
Š È 2 1‹ .
1È2 4
. The area
sec 0 œ È2 1. Therefore the area
ŠÈ2 1‹ . Thus, the area of the total shaded region is
È
1È2 #
Š 1 4 2 È2 1‹ Š 1 4 2 È2 1‹ œ
.
48. The area of the rectangle bounded by the lines y œ 2, y œ 0, t œ 14 , and t œ 1 is 2 ˆ1 ˆ 14 ‰‰ œ 2 area under the curve y œ sec# t on 14 ß !‘ is under the curve y œ 1 t# on [!ß "] is
'c
!
1Î4
"
$
œ
dt 3 œ 0 3 œ 3 Ê (d) is a solution to this problem.
dy dx
œ
50. y œ
'c sec t dt 4
Ê
dy dx
œ sec x and y(1) œ
51. y œ
'
sec t dt 4 Ê
dy dx
œ sec x and y(0) œ
x
1
!
x
and y(1) œ
'
" t
dt 3 Ê
" x
1
1
Thus, the total
. Therefore the area of the shaded region is ˆ2 1# ‰
'
" 1 t
$
5 3
49. y œ
x
$
!
2 3
'
!
. The
! ˆ 1‰ sec# t dt œ [tan t] 1Î% œ tan 0 tan 4 œ 1. The area
'! a1 t# b dt œ ’t t3 “ " œ Š1 13 ‹ Š0 03 ‹ œ 32 .
area under the curves on 14 ß "‘ is 1
1 #
'cc sec t dt 4 œ 0 4 œ 4 1
1
!
5 3
œ
" 3
1 #
.
Ê (c) is a solution to this problem.
sec t dt 4 œ 0 4 œ 4 Ê (b) is a solution to this problem.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 5.4 The Fundamental Theorem of Calculus 52. y œ
'
53. y œ
'
x
" " t x
#
55. Area œ
dt 3 Ê
dy dx
œ
" x
and y(1) œ
'
"
" t
"
dt 3 œ 0 3 œ 3 Ê (a) is a solution to this problem.
sec t dt 3
'c ÎÎ
b 2 b 2
54. y œ
$
4h ˆ b# ‰ 3b#
œ ˆ bh #
ˆ bh #
bh ‰ 6
Œh ˆ # ‰ b
bh ‰ 6
œ bh
x
"
È1 t# dt 2
bÎ2
4h ˆ #b ‰ 3b#
œ
bh 3
'
4hx$ 3b# “ bÎ2
ˆh ˆ 4h ‰ # ‰ dx œ ’hx b# x
œ Œhˆ #b ‰
$
2 3
bh
56. k 0 Ê one arch of y œ sin kx will occur over the interval 0ß 1k ‘ Ê the area œ œ "k cos ˆk ˆ 1k ‰‰ ˆ k" cos (0)‰ œ 57.
dc dx
œ
58. r œ
" #È x
'
$
!
œ
Š2
" #
x"Î# Ê c œ
'
dx œ 2
'
2 (x 1)# ‹
x
!
$
!
'
1Îk
!
sin kx dx œ
" k
œ t"Î# ‘ 0 œ Èx; c(100) c(1) œ È100 È1 œ $9.00 x
" (x 1)# ‹
$
dx œ 2 x ˆ x11 ‰‘ ! œ 2 ’Š3
" (3 1) ‹
Š0
" (0 1) ‹“
œ 2 3 "4 1‘ œ 2 ˆ2 4" ‰ œ 4.5 or $4500 59. (a) t œ 0 Ê T œ 85 3È25 0 œ 70‰ F; t œ 16 Ê T œ 85 3È25 16 œ 76‰ F; t œ 25 Ê T œ 85 3È25 25 œ 85‰ F (b) average temperatuve œ œ
1 25 Š85a25b
1 25 0
2a25 25b
' 25 Š85 3È25 t‹ dt œ 251 ’85t 2a25 tb3Î2 “ 25 !
0
3 Î2
‹
1 25 Š85a0b
2a25 0b
3Î2
‰
‹ œ 75 F
3 60. (a) t œ 0 Ê H œ È0 1 5a0b1Î3 œ 1 ft; t œ 4 Ê H œ È4 1 5a4b1Î3 œ È5 5È 4 ¸ 10.17 ft; 1 Î 3 t œ 8 Ê H œ È8 1 5a8b œ 13 ft
(b) average height œ œ
61.
'
62.
'
x
1
!
x
1 2 8 Š 3 a8
1b
3 Î2
1 80
' 8 ŠÈt 1 5 t1Î3 ‹ dt œ 18 ’ 23 at 1b3Î2 154 t4Î3 “ 8
15 4
!
0
a8b
4Î3
‹
f(t) dt œ x# 2x 1 Ê f(x) œ f(t) dt œ x cos 1x Ê f(x) œ
63. f(x) œ 2
'#
x
"
9 1t
d dx
1 2 8 Š 3 a0
'
d dx
'
!
1
x
x
1b
3Î2
f(t) dt œ
d dx
4Î3 15 ‹ 4 a0b
œ
29 3
¸ 9.67 ft
ax# 2x 1b œ 2x 2
f(t) dt œ cos 1x 1x sin 1x Ê f(4) œ cos 1(4) 1(4) sin 1(4) œ 1
dt Ê f w (x) œ 1 (x9 1) œ
9 x 2
L(x) œ 3(x 1) f(1) œ 3(x 1) 2 œ 3x 5
Ê f w (1) œ 3; f(1) œ 2
'#" " 1 9 t dt œ 2 0 œ 2;
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
1 Îk
cos kx‘ !
2 k
" "Î# dt # t
Š1
287
288
Chapter 5 Integration
64. g(x) œ 3
'
1
x#
sec (t 1) dt Ê gw (x) œ asec ax# 1bb (2x) œ 2x sec ax# 1b Ê gw (1) œ 2(1) sec a(1)# 1b #
a"b " œ 2; g(1) œ 3 ' sec (t 1) dt œ 3 ' sec (t 1) dt œ 3 0 œ 3; L(x) œ 2(x (1)) g(1) 1
1
œ 2(x 1) 3 œ 2x 1 65. (a) (b) (c) (d) (e) (f) (g)
True: since f is continuous, g is differentiable by Part 1 of the Fundamental Theorem of Calculus. True: g is continuous because it is differentiable. True, since gw (1) œ f(1) œ 0. False, since gww (1) œ f w (1) 0. True, since gw (1) œ 0 and gww (1) œ f w (1) 0. False: gww (x) œ f w (x) 0, so gww never changes sign. True, since gw (1) œ f(1) œ 0 and gw (x) œ f(x) is an increasing function of x (because f w (x) 0).
66. Let a œ x0 x1 x2 â xn œ b be any partition of Òa, bÓ and let F be any antiderivative of f. n
(a) !Faxi b Faxi1 b‘ iœ1
œ Fax1 b Fax0 b‘ Fax2 b Fax1 b‘ Fax3 b Fax2 b‘ â Faxn1 b Faxn2 b‘ Faxn b Faxn1 b‘ œ Fax0 b Fax1 b Fax1 b Fax2 b Fax2 b â Faxn1 b Faxn1 b Faxn b œ Faxn b Fax0 b œ Fabb Faab (b) Since F is any antiderivative of f on Òa, bÓ Ê F is differentiable on Òa, bÓ Ê F is continuous on Òa, bÓ. Consider any subinterval Òxi1 , xi Ó in Òa, bÓ, then by the Mean Value Theorem there is at least one number ci in Ðxi1 , xi Ñ such that n
Faxi b Faxi1 b‘ œ Fw aci baxi xi1 b œ faci baxi xi1 b œ faci b?xi . Thus Fabb Faab œ !Faxi b Faxi1 b‘ iœ1
n
œ !faci b?xi . iœ1
n
(c) Taking the limit of Fabb Faab œ !faci b?xi we obtain Ê Fabb Faab œ 'a faxb dx
iœ1
lim aFabb Faabb œ
mPmÄ0
n
lim Œ!faci b?xi
mPmÄ0
iœ1
b
67-70. Example CAS commands: Maple: with( plots ); f := x -> x^3-4*x^2+3*x; a := 0; b := 4; F := unapply( int(f(t),t=a..x), x ); # (a) p1 := plot( [f(x),F(x)], x=a..b, legend=["y = f(x)","y = F(x)"], title="#67(a) (Section 5.4)" ): p1; dF := D(F); # (b) q1 := solve( dF(x)=0, x ); pts1 := [ seq( [x,f(x)], x=remove(has,evalf([q1]),I) ) ]; p2 := plot( pts1, style=point, color=blue, symbolsize=18, symbol=diamond, legend="(x,f(x)) where F '(x)=0" ): display( [p1,p2], title="81(b) (Section 5.4)" ); incr := solve( dF(x)>0, x ); # (c) decr := solve( dF(x) x^2; f := x -> sqrt(1-x^2); F := unapply( int( f(t), t=a..u(x) ), x ); dF := D(F); # (b) cp := solve( dF(x)=0, x ); solve( dF(x)>0, x ); solve( dF(x)29. :
V œ 'a 1R# (x) dx œ 'c1 1 a3x% b dx œ 1 'c1 9x) dx b
1
1
#
"
œ 1 cx* d " œ 21
(b) =2/66 7/>29. : shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x a3x% b dx œ 21 † 3'0 x& dx œ 21 † 3 ’ x6 “ œ 1 b
1
1
'
!
Note: The lower limit of integration is 0 rather than 1. (c) =2/66 7/>29. : shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ 21'c1 (1 x) a3x% b dx œ 21 ’ 3x5 b
"
1
&
(d) A+=2/< 7/>29. :
" x' 2 “ "
œ 21 ˆ 35 "# ‰ ˆ 35 "# ‰‘ œ
121 5
R(x) œ 3, r(x) œ 3 3x% œ 3 a1 x% b Ê V œ 'a 1 cR# (x) r# (x)d dx œ 'c1 1 ’9 9 a1 x% b “ dx b
1
œ 91 'c1 c1 a1 2x% x) bd dx œ 91 'c1 a2x% x) b dx œ 91 ’ 2x5 1
1
8. (a) A+=2/< 7/>29. : R(x) œ
, r(x) œ
4 x$
" #
&
" x* 9 “ "
b
21†13 5
œ
261 5
2
(b) =2/66 7/>29. :
V œ 21'1 x ˆ x4$ "# ‰ dx œ 21 ’4x" 2
(c) =2/66 7/>29. :
" #
# x# 4 “"
16 5
4" ‰ œ
1 20
(2 10 64 5) œ
b
2
x
(d) A+=2/< 7/>29. :
# x# 4 “"
571 #0
œ 21 ˆ 4# 1‰ ˆ4 4" ‰‘ œ 21 ˆ 54 ‰ œ
shell ‰ shell V œ 21'a ˆ radius Š height ‹ dx œ 21'1 (2 x) ˆ x4$ "# ‰ dx œ 21'1 ˆ x8$ 4 x
œ 181 25 "9 ‘ œ
# # # & Ê V œ 'a 1cR# (x) r# (x)d dx œ '1 1 ’ˆ x4$ ‰ ˆ "# ‰ “ dx œ 1 16 x4 ‘ " 5 x
"‰ " ˆ 16 " ‰‘ œ 1 ˆ 10 œ 1 ˆ 5†16 32 # 5 4
œ 21 ’ x4#
#
2
4 x#
51 #
1 x# ‰ dx
œ 21 (1 2 2 1) ˆ4 4 1 4" ‰‘ œ
31 #
V œ 'a 1cR# (x) r# (x)d dx b
# œ 1 '1 ’ˆ 7# ‰ ˆ4 2
dx
œ
491 4
161'1 a1 2x$ x' b dx
œ
491 4
161 ’x x#
œ
491 4 491 4 491 4
161 ˆ2 4" 5†"3# ‰ ˆ1 1 5" ‰‘ " 161 ˆ 4" 160 5" ‰
œ œ 9.
4 ‰# x$ “
2
161 160
# x & 5 “"
(40 1 32) œ
491 4
711 10
œ
1031 20
(a) .3=5 7/>29. :
# V œ 1 '1 ŠÈx 1‹ dx œ 1'1 (x 1) dx œ 1 ’ x# x“
#
5
5
‰ ˆ" ‰‘ œ 1 ˆ 24 ‰ œ 1 ˆ 25 # 5 # 1 # 4 œ 81
& "
(b) A+=2/< 7/>29. :
R(y) œ 5, r(y) œ y# 1 Ê V œ 'c 1 cR# (y) r# (y)d dy œ 1 'c2 ’25 ay# 1b “ dy d
2
œ 1'c2 a25 y% 2y# 1b dy œ 1 'c2 a24 y% 2y# b dy œ 1 ’24y 2
2
#
y& 5
32 y$ “
# #
œ 21 ˆ24 † 2
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
32 5
2 3
† 8‰
378
Chapter 6 Applications of Definite Integrals œ 321 ˆ3
2 5
"3 ‰ œ
321 15
(45 6 5) œ
10881 15
(c) .3=5 7/>29. : R(y) œ 5 ay# 1b œ 4 y#
Ê V œ 'c 1R# (y) dy œ 'c2 1 a4 y# b dy d
2
#
œ 1 'c2 a16 8y# y% b dy 2
œ 1 ’16y
8y$ 3
œ 641 ˆ1
2 3
# y& 5 “ #
"5 ‰ œ
œ 21 ˆ32
641 15
64 3
(15 10 3) œ
32 ‰ 5 5121 15
10. (a) =2/66 7/>29. :
shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21y Šy d
4
œ 21'0 Šy# 4
œ
21 1#
† 64 œ
y$ 4‹
$
dy œ 21 ’ y3
321 3
%
y% 16 “ !
y# 4‹
dy
œ 21 ˆ 64 3
64 ‰ 4
(b) =2/66 7/>29. : shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21x ˆ2Èx x‰ dx œ 21'0 ˆ2x$Î# x# ‰ dx œ 21 ’ 45 x&Î# b
4
œ 21 ˆ 45 † 32
64 ‰ 3
œ
4
1281 15
% x$ 3 “!
(c) =2/66 7/>29. :
shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ '0 21(4 x) ˆ2Èx x‰ dx œ 21'0 ˆ8x"Î# 4x 2x$Î# x# ‰ dx b
4
$Î# œ 21 ’ 16 2x# 54 x&Î# 3 x
œ 641 ˆ1 45 ‰ œ
641 5
4
% x$ 3 “!
œ 21 ˆ 16 3 † 8 32
(d) =2/66 7/>29. :
shell ‰ shell V œ 'c 21 ˆ radius Š height ‹ dy œ '0 21(4 y) Šy d
4
œ 21'0 Š4y 2y# 4
y$ 4‹
dy œ 21 ’2y# 32 y$
y# 4‹
% y% 16 “ !
4 5
† 32
64 ‰ 3
œ 641 ˆ 34 1
dy œ 21'0 Š4y y# y# 4
œ 21 ˆ32
2 3
4 5
y$ 4‹
32 ‰
dy
† 64 16‰ œ 321 ˆ2
8 3
1‰ œ
321 3
11. .3=5 7/>29. : R(x) œ tan x, a œ 0, b œ
1 3
Ê V œ 1 '0 tan# x dx œ 1'0 asec# x 1b dx œ 1[tan x x]! 1Î3
12. .3=5 7/>29. :
1Î3
1Î$
V œ 1'0 (2 sin x)# dx œ 1 '0 a4 4 sin x sin# xb dx œ 1'0 ˆ4 4 sin x 1
1
œ 1 4x 4 cos x
x #
sin 2x ‘ 1 4 !
1
œ 1 ˆ41 4
1 #
0‰ (0 4 0 0)‘ œ
œ
1cos 2x ‰ dx # 9 1 1 ˆ # 8‰ œ 1#
1 Š3È31‹ 3
(91 16)
13. (a) .3=5 7/>29. :
V œ 1'0 ax# 2xb dx œ 1'0 ax% 4x$ 4x# b dx œ 1 ’ x5 x% 34 x$ “ œ 1 ˆ 32 5 16 2
œ
161 15
2
#
(6 15 10) œ
#
&
!
161 15
32 ‰ 3
(b) A+=2/< 7/>29. :
V œ '0 1’1# ax# 2x "b “ dx œ '0 1 dx '0 1 ax "b% dx œ #1 ’1 2
2
#
2
(c) =2/66 7/>29. :
# ax"b& & “!
œ #1 1 †
shell ‰ shell V œ 'a 21 ˆ radius Š height ‹ dx œ 21'0 (2 x) c ax# 2xbd dx œ 21'0 (2 x) a2x x# b dx b
2
2
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
# &
œ
)1 &
Chapter 6 Practice Exercises œ 21'0 a4x 2x# 2x# x$ b dx œ 21'0 ax$ 4x# 4xb dx œ 21 ’ x4 34 x$ 2x# “ œ 21 ˆ4 2
œ
21 3
2
#
%
81 3
(36 32) œ
32 3
!
8‰
(d) A+=2/< 7/>29. :
V œ 1 '0 c2 ax# 2xbd dx 1'0 2# dx œ 1'0 ’4 4 ax# 2xb ax# 2xb “ dx 81 2
2
#
2
#
œ 1'0 a4 4x# 8x x% 4x$ 4x# b dx 81 œ 1'0 ax% 4x$ 8x 4b dx 81 2
2
#
&
‰ œ 1 ’ x5 x% 4x# 4x“ 81 œ 1 ˆ 32 5 16 16 8 81 œ !
1 5
(32 40) 81 œ
721 5
401 5
œ
321 5
14. .3=5 7/>29. :
V œ 21'0 4 tan# x dx œ 81'0 asec# x 1b dx œ 81[tan x x]! 1Î4
1Î4
1Î%
œ 21(4 1)
15. The material removed from the sphere consists of a cylinder and two "caps." From the diagram, the height of the cylinder #
is 2h, where h# ŠÈ$‹ œ ## , i.e. h œ ". Thus #
Vcyl œ a#hb1ŠÈ$‹ œ '1 ft$ . To get the volume of a cap, use the disk method and x# y# œ ## : Vcap œ '" 1x# dy 2
œ '" 1a% y# bdy œ 1’%y 2
œ 1ˆ8 83 ‰ ˆ% 3" ‰‘ œ
# y3 3 “"
&1 3
Vremoved œ Vcyl #Vcap œ '1
ft$ . Therefore, "!1 3
œ
#)1 3
ft$ .
16. We rotate the region enclosed by the curve y œ É12 ˆ1
4x# ‰ 121
and the x-axis around the x-axis. To find the
11Î2
volume we use the .3=5 method: V œ 'a 1R# (x) dx œ 'c11Î2 1 ŠÉ12 ˆ1 b
œ 121'c11Î2 Š1 11Î2
4x# 121 ‹
œ 1321 ˆ1 "3 ‰ œ 17. y œ x"Î#
x$Î# 3
Ê
dx œ 121 ’x
2641 3
dy dx
œ
""Î# 4x$ 363 “ ""Î#
ˆ4
2 3
18. x œ y#Î$ Ê
" #
#
x"Î# "# x"Î# Ê Š dy dx ‹ œ
œ '1
8
† 8‰ ˆ2 23 ‰‘ œ
È9y#Î$ 4 3y"Î$
œ
" 4
" 3
5 12
12 Š1
4x# 121 ‹
dx
#
4
ˆ2
14 ‰ 3
œ
4y #Î$ 9
" #
ˆx"Î# x"Î# ‰ dx œ
" #
2x"Î# 23 x$Î# ‘ % "
10 3 dx Ê L œ '1 Ê1 Š dy ‹ dy œ '1 É1 #
8
8
4 9y#Î$
dy
'18 È9y#Î$ 4 ˆy"Î$ ‰ dy; u œ 9y#Î$ 4 Ê du œ 6y"Î$ dy; y œ 1 Ê u œ 13,
y œ 8 Ê u œ 40d Ä L œ 19. y œ
" #
#
dy œ
11Î2
ˆ x" 2 x‰ Ê L œ ' É1 4" ˆ x" 2 x‰ dx 1 4
y"Î$ Ê Š dx dy ‹ œ
2 3
11Î2
$
4
dx dy
dx œ 1 '
œ 881 ¸ 276 in$
4
" #
#
4 ‰ 11 ˆ 4 ‰ ˆ 11 ‰ “ œ 1321 ’1 ˆ 363 œ 241 ’ 11 Š 4 ‹“ 2 363 #
# Ê L œ '1 É 4" ˆ x" 2 x‰ dx œ '1 É 4" ax"Î# x"Î# b dx œ '1
œ
4x# ‰ 121 ‹
x'Î& 58 x%Î& Ê
dy dx
" 18
œ
'1340 u"Î# du œ 18" 32 u$Î# ‘ %! œ #"7 40$Î# 13$Î# ‘ ¸ 7.634 "$ " #
#
dy x"Î& "# x"Î& Ê Š dx ‹ œ
" 4
ˆx#Î& 2 x#Î& ‰
# Ê L œ '1 É1 "4 ax#Î& 2 x#Î& b dx Ê L œ '1 É 4" ax#Î& 2 x#Î& b dx œ ' É 4" ax"Î& x"Î& b dx 32
32
32
1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
379
380
Chapter 6 Applications of Definite Integrals œ '1
32
œ
" 48
20. x œ
" #
ˆx"Î& x"Î& ‰ dx œ
(1260 450) œ
" 1#
y$
" y
Ê
" % œ '1 É 16 y 2
" #
œ
1710 48
" 5 # 6 285 8
$#
x'Î& 45 x%Î& ‘ " œ
" y#
#
dx dy
œ
" 4
" y%
dy œ '1 ÊŠ 4" y#
y#
2
8 œ ˆ 12 "# ‰ ˆ 1"# 1‰ œ
7 1#
" #
21. S œ 'a 21y Ê1 Š dy dx ‹ dx;
dy dx
œ
#
b
" 16
Ê Š dx dy ‹ œ
œ
" y# ‹
#
" #
ˆ 65 † 2'
y%
" #
" y%
5 4
† 2% ‰ ˆ 56 54 ‰‘ œ
" #
ˆ 315 6
" % Ê L œ '1 Ê1 Š 16 y 2
dy œ '1 Š 4" y# 2
" y# ‹
dy œ ’ 1"# y$ y" “
" #
75 ‰ 4
" y% ‹
dy
# "
13 12 #
" È2x 1
Ê Š dy dx ‹ œ
" #x 1
Ê S œ '0 21È2x 1 É1 3
" #x 1
dx
2 È ' Èx 1 dx œ 2È21 2 (x 1)$Î# ‘ $ œ 2È21 † 2 (8 1) œ œ 21'0 È2x 1 É 2x 2x1 dx œ 2 21 0 3 3 ! 3
3
22. S œ 'a 21y Ê1 Š dy dx ‹ dx; #
b
œ
1 6
dy dx
% ' œ x# Ê Š dy dx ‹ œ x Ê S œ 0 21 † #
1
x$ 3
È1 x% dx œ
1 6
281È2 3
'01 È1 x% a4x$ b dx
'01 È1 x% d a1 x% b œ 16 ’ 32 a1 x% b$Î# “ " œ 19 ’2È2 1“ !
23. S œ 'c 21x Ê1 Š dx dy ‹ dy; #
d
dx dy
ˆ "# ‰ (4 2y) È4y y#
œ
œ
2y È4y y#
#
Ê 1 Š dx dy ‹ œ
4y y# 4 4y y# 4y y#
œ
4 4y y#
Ê S œ '1 21 È4y y# É 4y 4 y# dy œ 41'1 dx œ 41 2
2
24. S œ 'c 21x Ê1 Š dx dy ‹ dy; #
d
œ 1'2 È4y 1 dy œ 6
1 4
dx dy
œ
1 2È y
#
Ê 1 Š dx dy ‹ œ 1
32 (4y 1)$Î# ‘ ' œ #
1 6
(125 27) œ
1 6
" 4y
œ
4y 1 4y
(98) œ
Ê S œ '2 21Èy † 6
È4y 1 È4y
dy
491 3
25. The equipment alone: the force required to lift the equipment is equal to its weight Ê F" (x) œ 100 N.
The work done is W" œ 'a F" (x) dx œ '0 100 dx œ [100x]%! ! œ 4000 J; the rope alone: the force required b
40
to lift the rope is equal to the weight of the rope paid out at elevation x Ê F# (x) œ 0.8(40 x). The work done is W# œ 'a F# (x) dx œ '0 0.8(40 x) dx œ 0.8 ’40x b
40
the total work is W œ W" W# œ 4000 640 œ 4640 J
%! x# # “!
œ 0.8 Š40#
40# # ‹
œ
(0.8)(1600) #
œ 640 J;
26. The force required to lift the water is equal to the water's weight, which varies steadily from 8 † 800 lb to 8 † 400 lb over the 4750 ft elevation. When the truck is x ft off the base of Mt. Washington, the water weight is x‰ F(x) œ 8 † 800 † ˆ 2†24750 œ (6400) ˆ1 †4750
œ '0
4750
6400 ˆ1
x ‰ 9500
dx œ 6400 ’x
œ 22,800,000 ft † lb
x ‰ 9500
lb. The work done is W œ 'a F(x) dx
%(&! x# 2†9500 “ !
b
œ 6400 Š4750
4750# 4†4750 ‹
œ ˆ 34 ‰ (6400)(4750)
27. Force constant: F œ kx Ê 20 œ k † 1 Ê k œ 20 lb/ft; the work to stretch the spring 1 ft is W œ '0 kx dx œ k'0 x dx œ ’20 x# “ œ 10 ft † lb; the work to stretch the spring an additional foot is 1
1
#
"
! #
W œ '1 kx dx œ k '1 x dx œ 20 ’ x# “ œ 20 ˆ 4# "# ‰ œ 20 ˆ 3# ‰ œ 30 ft † lb 2
2
#
"
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 6 Practice Exercises 28. Force constant: F œ kx Ê 200 œ k(0.8) Ê k œ 250 N/m; the 300 N force stretches the spring x œ œ
300 250
381
F k
œ 1.2 m; the work required to stretch the spring that far is then W œ '0 F(x) dx œ '0 250x dx 1Þ2
1Þ2
œ [125x# ]!"Þ# œ 125(1.2)# œ 180 J 29. We imagine the water divided into thin slabs by planes perpendicular to the y-axis at the points of a partition of the interval [0ß 8]. The typical slab between the planes at y and y ?y has a volume of about ?V œ 1(radius)# (thickness) # œ 1 ˆ 54 y‰ ?y œ 25161 y# ?y ft$ . The force F(y) required to lift this slab is equal to its weight: F(y) œ 62.4 ?V œ
(62.4)(25) 16
1y# ?y lb. The distance through which F(y)
must act to lift this slab to the level 6 ft above the top is about (6 8 y) ft, so the work done lifting the slab is about ?W œ
(62.4)(25) 16
1y# (14 y) ?y ft † lb. The work done
lifting all the slabs from y œ 0 to y œ 8 to the level 6 ft above the top is approximately 8
W¸! !
(62.4)(25) 16
1y# (14 y) ?y ft † lb so the work to pump the water is the limit of these Riemann sums as the norm of
the partition goes to zero: W œ '0
8
$ œ (62.4) ˆ 25161 ‰ Š 14 3 †8
8% 4‹
(62.4)(25) (16)
(62.4)(25)1 16
1y# (14 y) dy œ
'08 a14y# y$ b dy œ (62.4) ˆ 25161 ‰ ’ 143 y$ y4 “ ) %
!
¸ 418,208.81 ft † lb
30. The same as in Exercise 29, but change the distance through which F(y) must act to (8 y) rather than (6 8 y). Also change the upper limit of integration from 8 to 5. The integral is:W œ '0
5
œ (62.4) ˆ 25161 ‰'0 a8y# y$ b dy œ (62.4) ˆ 25161 ‰ ’ 83 y$ 5
& y% 4 “!
(62.4)(25)1 16
y# (8 y) dy
œ (62.4) ˆ 25161 ‰ Š 83 † 5$
5% 4‹
31. The tank's cross section looks like the figure in Exercise 29 with right edge given by x œ #
slab has volume ?V œ 1(radius)# (thickness) œ 1 ˆ #y ‰ ?y œ F(y) œ 60 †
1 4
y œ y# . A typical horizontal
y# ?y. The force required to lift thisslab is its weight:
y# ?y. The distance through which F(y) must act is (2 10 y) ft, so the work to pump the liquid is
W œ 60'0 1a12 ybŠ y4 ‹dy œ 151 ’ 12y 3 10
22,5001 ft†lb 275 ft†lb/sec
1 4
5 10
¸ 54,241.56 ft † lb
#
$
"! y% 4 “!
œ 22,5001 ft † lb; the time needed to empty the tank is
¸ 257 sec
32. A typical horizontal slab has volume about ?V œ (20)(2x)?y œ (20) ˆ2È16 y# ‰ ?y and the force required to lift this slab is its weight F(y) œ (57)(20) ˆ2È16 y# ‰ ?y. The distance through which F(y) must act is (6 4 y) ft, so the work to pump the olive oil from the half-full tank is W œ 57'c4 (10 y)(20) ˆ2È16 y# ‰ dy 0
"Î# œ 2880 'c4 10È16 y# dy 1140'c4 a16 y# b (2y) dy 0
0
œ 22,800 † (area of a quarter circle having radius 4) 23 (1140) ’a16 y# b œ 335,153.25 ft † lb
$Î# !
“
%
œ (22,800)(41) 48,640
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
382
Chapter 6 Applications of Definite Integrals
33. Intersection points: 3 x# œ 2x# Ê 3x# 3 œ 0 Ê 3(x 1)(x 1) œ 0 Ê x œ 1 or x œ 1. Symmetry suggests that x œ 0. The typical @/3-+6 strip has # # # center of mass: (µ x ßµ y ) œ Šxß 2x a3 x b ‹ œ Šxß x 3 ‹ , #
#
#
#
#
length: a3 x b 2x œ 3 a1 x b, width: dx, area: dA œ 3 a1 x# b dx, and mass: dm œ $ † dA œ 3$ a1 x# b dx Ê the moment about the x-axis is µ y dm œ œ
3 #
$ ax# 3b a1 x# b dx œ
3 #
&
2x$ 3
$ ’ x5
" x$ 3 “ "
œ 3$ ’x
3x“
" "
3 #
$ ax% 2x# 3b dx Ê Mx œ ' µ y dm œ
œ 3$ ˆ 5"
2 3
3$ 15
3‰ œ
œ 6$ ˆ1 "3 ‰ œ 4$ Ê y œ
Mx M
œ
(3 10 45) œ
32$ 5 †4 $
œ
8 5
32$ 5
3 #
$ 'c1 ax% 2x# 3b dx "
; M œ ' dm œ 3$ 'c1 a1 x# b dx "
. Therefore, the centroid is (xß y) œ ˆ!ß 85 ‰ .
34. Symmetry suggests that x œ 0. The typical @/3-+6 # strip has center of mass: (µ x ßµ y ) œ Šxß x# ‹ , length: x# , width: dx, area: dA œ x# dx, mass: dm œ $ † dA œ $ x# dx Ê the moment about the x-axis is µ y dm œ #$ x# † x# dx œ
$ #
x% dx Ê Mx œ ' µ y dm œ
$ #
'c22 x% dx œ 10$ cx& d ##
35. The typical @/3-+6 strip has: center of mass: (µ x ßµ y ) œ Œxß
#
4 x4 #
, length: 4
area: dA œ Š4 œ $ Š4
x# 4‹
x# 4 ‹dx,
width: dx,
mass: dm œ $ † dA
dx Ê the moment about the x-axis is #
Š4 x4 ‹
µ y dm œ $ †
x# 4,
#
Š4
x# 4‹
dx œ
$ #
Š16
moment about the y-axis is µ x dm œ $ Š4 œ
$ 2
’16x
% x& 5†16 “ !
$ #
œ
64
64 ‘ 5
œ
x% 16 ‹ x# 4‹
œ
16†$ †3 32†$
œ
3 2
and y œ
Mx M
œ
dx. Thus, Mx œ ' µ y dm œ
4
4
My M
x$ 4‹
† x dx œ $ Š4x
; My œ ' µ x dm œ $ '0 Š4x
128$ 5
œ $ (32 16) œ 16$ ; M œ ' dm œ $ '0 Š4 Ê xœ
dx; the
128†$ †3 5†32†$
x# 4‹
œ
dx œ $ ’4x
12 5
% x$ 12 “ !
x$ 4‹
dx œ $ ’2x#
œ $ ˆ16
64 ‰ 1#
œ
$ #
'04 Š16 16x ‹ dx %
% x% 16 “ !
32$ 3
‰ . Therefore, the centroid is (xß y) œ ˆ 3# ß 12 5 .
36. A typical 29+6 strip has: # center of mass: (µ x ßµ y ) œ Š y # 2y ß y‹ , length: 2y y# , width: dy, area: dA œ a2y y# b dy, mass: dm œ $ † dA œ $ a2y y# b dy; the moment about the x-axis is µ y dm œ $ † y † a2y y# b dy œ $ a2y# y$ b ; the moment # about the y-axis is µ x dm œ $ † ay 2yb † a2y y# b dy #
œ a4y y b dy Ê Mx œ ' µ y dm œ $ '0 a2y# y$ b dy $ #
#
œ $ ’ 23 y$ œ
$ #
yœ
ˆ 43†8 Mx M
2
%
œ
# y% 4 “!
32 ‰ 5
4†$ †3 3 † 4 †$
œ
œ $ ˆ 23 † 8 32$ 15
16 ‰ 4
œ $ ˆ 16 3
16 ‰ 4
œ
$ †16 12
œ
4$ 3
; My œ ' µ x dm œ
$ #
'02 a4y# y% b dy œ #$ ’ 34 y$ y5 “ #
$ ; M œ ' dm œ $ '0 a2y y# b dy œ $ ’y# y3 “ œ $ ˆ4 83 ‰ œ
2
# !
&
!
4$ 3
Ê xœ
œ 1. Therefore, the centroid is (xß y) œ ˆ 58 ß 1‰ .
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
My M
œ
$ †32†3 15†$ †4
œ
8 5
and
Chapter 6 Practice Exercises
383
37. A typical horizontal strip has: center of mass: (µ x ßµ y ) #
œ Š y #2y ß y‹ , length: 2y y# , width: dy, area: dA œ a2y y# b dy, mass: dm œ $ † dA œ (1 y) a2y y# b dy Ê the moment about the x-axis is µ y dm œ y(1 y) a2y y# b dy # œ a2y 2y$ y$ y% b dy œ a2y# y$ y% b dy; the moment about the y-axis is # µ x dm œ Š y 2y ‹ (1 y) a2y y# b dy œ " a4y# y% b (1 y) dy œ #
Ê Mx œ ' µ y dm œ '0 a2y# y$ y% b dy œ ’ 23 y$ 2
œ
16 60
œ
" #
" #
#
(20 15 24) œ $
Š 4†32 2%
2& 5
(11) œ
4 15
2' 6‹
2
44 40
œ
11 10
y$ 3
; My œ ' µ x dm œ '0
2
œ 4 ˆ 43 2
œ '0 a2y y# y$ b dy œ ’y# ‰ ˆ 38 ‰ œ œ ˆ 44 15
44 15
y% 4
4 5
œ ˆ4
8 3
16 ‰ 4
œ ˆ 16 3
16 4
32 ‰ 5
œ 16 ˆ "3
a4y# 4y$ y% y& b dy œ
86 ‰ œ 4 ˆ2 45 ‰ œ
# y% 4 “!
" #
# y& 5 “!
a4y# 4y$ y% y& b dy
œ
8 3
24 5
" #
" 4
25 ‰
’ 43 y$ y%
y& 5
; M œ ' dm œ '0 (1 y) a2y y# b dy
# y' 6 “!
2
Ê xœ
My M
‰ ˆ 83 ‰ œ œ ˆ 24 5
9 5
and y œ
Mx M
‰ . Therefore, the center of mass is (xß y) œ ˆ 95 ß 11 10 .
3 3 38. A typical vertical strip has: center of mass: (µ x ßµ y ) œ ˆxß 2x3$Î# ‰ , length: x$Î# , width: dx, area: dA œ x$Î# dx, µ 3 3 3 9$ mass: dm œ $ † dA œ $ † dx Ê the moment about the x-axis is y dm œ †$ dx œ dx; the moment about x$Î#
3 the y-axis is µ x dm œ x † $ x$Î# dx œ
(a) Mx œ $ '1
9
M œ $ '1
9
(b) Mx œ '1
9
" #
3 x$Î# x #
9$ #
ˆ x9$ ‰ dx œ
3$ x"Î#
#x$Î#
# *
20$ 9
’ x# “ œ "
3 ‰ ; My œ $ '1 x ˆ x$Î# dx œ 3$ 2x"Î# ‘ " œ 12$ ;
*
*
9 #
*
9
dx œ 6$ x"Î# ‘ " œ 4$ Ê x œ
ˆ x9$ ‰ dx œ
2x$
x$Î#
dx.
My M
œ
12$ 4$
œ 3 and y œ
Mx M
œ
ˆ 209$ ‰ 4$
œ
5 9
* 3 ‰ 3 ‰ x" ‘ * œ 4; My œ ' x# ˆ $Î# dx œ 2x$Î# ‘ " œ 52; M œ '1 x ˆ x$Î# dx " x 1
œ 6 x"Î# ‘ " œ 12 Ê x œ
9
My M
œ
13 3
and y œ
Mx M
9
œ
" 3
strip 39. F œ 'a W † Š depth ‹ † L(y) dy Ê F œ 2 '0 (62.4)(2 y)(2y) dy œ 249.6'0 a2y y# b dy œ 249.6 ’y# b
2
2
# y$ 3 “!
œ (249.6) ˆ4 83 ‰ œ (249.6) ˆ 43 ‰ œ 332.8 lb strip 40. F œ 'a W † Š depth ‹ † L(y) dy Ê F œ '0 75 ˆ 56 y‰ (2y 4) dy œ 75'0 ˆ 53 y 5Î6
b
5Î6
10 3
2y# 4y‰ dy
7 7 # 2 $ ‘ &Î' 50 ‰ 25 ‰ 125 ‰‘ #‰ ˆ 18 œ 75 '0 ˆ 10 dy œ 75 10 ˆ 67 ‰ ˆ 36 ˆ 32 ‰ ˆ 216 3 3 y 2y 3 y 6 y 3 y ! œ (75) 5Î6
œ (75) ˆ 25 9
175 216
250 ‰ 3†#16
‰ œ ˆ 9†75 #16 (25 † 216 175 † 9 250 † 3) œ
strip 41. F œ 'a W † Š depth ‹ † L(y) dy Ê F œ 62.4'0 (9 y) Š2 † b
4
%
œ 62.4 6y$Î# 25 y&Î# ‘ ! œ (62.4) ˆ6 † 8
2 5
Èy 2 ‹
(75)(3075) 9†#16
¸ 118.63 lb.
dy œ 62.4'0 ˆ9y"Î# 3y$Î# ‰ dy 4
‰ (48 † 5 64) œ † 32‰ œ ˆ 62.4 5
(62.4)(176) 5
œ 2196.48 lb
strip 42. Place the origin at the bottom of the tank. Then F œ '0 W † Š depth ‹ † L(y) dy, h œ the height of the mercury column, h
strip depth œ h y, L(y) œ 1 Ê F œ '0 849(h y) " dy œ (849)'0 (h y) dy œ 849’hy h
œ
849 # 2 h .
Now solve
849 # 2 h
h
h
y# # “!
œ 849 Šh#
h# #‹
œ 40000 to get h ¸ 9.707 ft. The volume of the mercury is s2 h œ 12 † 9.707 œ 9.707 ft$ Þ
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
384
Chapter 6 Applications of Definite Integrals
CHAPTER 6 ADDITIONAL AND ADVANCED EXERCISES 1. V œ 1 'a cf(x)d# dx œ b# ab Ê 1'a cf(t)d# dt œ x# ax for all x a Ê 1 [f(x)]# œ 2x a Ê f(x) œ É 2x1 a b
x
2. V œ 1 '0 [f(x)]# dx œ a# a Ê 1 '0 [f(t)]# dt œ x# x for all x a Ê 1[f(x)]# œ 2x 1 Ê f(x) œ É 2x1 1 a
x
3. s(x) œ Cx Ê '0 È1 [f w (t)]# dt œ Cx Ê È1 [f w (x)]# œ C Ê f w (x) œ ÈC# 1 for C 1 x
Ê f(x) œ '0 ÈC# 1 dt k. Then f(0) œ a Ê a œ 0 k Ê f(x) œ '0 ÈC# 1 dt a Ê f(x) œ xÈC# 1 a, x
x
where C 1. 4. (a) The graph of f(x) œ sin x traces out a path from (!ß !) to (!ß sin !) whose length is L œ '0 È1 cos# ) d). !
The line segment from (0ß 0) to (!ß sin !) has length È(! 0)# (sin ! 0)# œ È!# sin# !. Since the shortest distance between two points is the length of the straight line segment joining them, we have ! immediately that ' È1 cos# ) d) È!# sin# ! if 0 ! Ÿ 1 . #
0
(b) In general, if y œ f(x) is continuously differentiable and f(0) œ 0, then '0 È1 [f w (t)]# dt È!# f # (!) !
for ! 0. 5. We can find the centroid and then use Pappus' Theorem to calculate the volume. faxb œ x, gaxb œ x2 , faxb œ gaxb 1 Ê x œ x2 Ê x2 x œ 0 Ê x œ 0, x œ 1; $ œ 1; M œ '0 cx x2 ddx œ "# x2 13 x3 ‘0 œ ˆ "# 13 ‰ 0 œ 1
1 6
xœ
1 1 Î6
'01 xcx x2 ddx œ 6'01 cx2 x3 ddx œ 6 31 x3 41 x4 ‘10 œ 6ˆ 31 41 ‰ 0 œ 21
yœ
1 1 Î6
'01 12 ’x2 ax2 b2 “dx œ 3'01 cx2 x4 ddx œ 3 13 x3 15 x5 ‘10 œ 3ˆ 13 15 ‰ 0 œ 25 Ê The centroid is ˆ 12 , 25 ‰.
3 is the distance from ˆ 12 , 25 ‰ to the axis of rotation, y œ x. To calculate this distance we must find the point on y œ x that also lies on the line perpendicular to y œ x that passes through ˆ 12 , 25 ‰. The equation of this line is y 25 œ 1ˆx 12 ‰ Êxyœ
9 10 .
9 3 œ Ɉ 20
The point of intersection of the lines x y œ
1 ‰2 2
9 ˆ 20
2 ‰2 5
œ
1 . 10È2
9 and y œ x is ˆ 20 ,
9 10
Thus V œ 21Š 101È2 ‹ˆ 16 ‰ œ
9 ‰ 20 .
Thus,
1 . 30È2
6. Since the slice is made at an angle of 45‰ , the volume of the wedge is half the volume of the cylinder of radius height 1. Thus, V œ
" ˆ " ‰2 # ’1 # a1b
“œ
" #
and
1 8.
7. y œ 2Èx Ê ds œ É "x 1 dx Ê A œ '0 2Èx É "x 1 dx œ 3
4 3
(1 x)$Î# ‘ $ œ !
28 3
8. This surface is a triangle having a base of 21a and a height of 21ak. Therefore the surface area is " # # # (21a)(21ak) œ 21 a k. d# x dt#
9. F œ ma œ t# Ê
œaœ
t# m
Ê vœ
x œ 0 when t œ 0 Ê C" œ 0 Ê x œ W œ ' F dx œ '0
Ð12mhÑ"Î%
œ
(12mh)$Î# 18m
œ
F(t) †
12mh†È12mh 18m
œ
2h 3
dx dt
dx t$ dt œ 3m C; v œ 0 when t œ 0 Ê t% "Î% . 12m . Then x œ h Ê t œ (12mh)
dt œ '0
Ð12mhÑ"Î%
† 2È3mh œ
4h 3
t# †
$
t 3m
dt œ
" 3m
'
’ t6 “
Ð12mh)"Î%
0
Cœ0 Ê
dx dt
œ
t$ 3m
The work done is
" ‰ œ ˆ 18m (12mh)'Î%
È3mh
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Ê xœ
t% 12m
C" ;
Chapter 6 Additional and Advanced Exercises 10. Converting to pounds and feet, 2 lb/in œ
†
2 lb 1 in
œ 24 lb/ft. Thus, F œ 24x Ê W œ '0
1Î2
12 in 1 ft
24x dx
"Î# " " ‰ œ c12x# d ! œ 3 ft † lb. Since W œ "# mv!# "# mv"# , where W œ 3 ft † lb, m œ ˆ 10 lb‰ ˆ 3# ft/sec # " œ 320 slugs, and v" œ 0 ft/sec, we have 3 œ ˆ #" ‰ ˆ 3#"0 v#! ‰ Ê v!# œ 3 † 640. For the projectile height, s œ 16t# v! t (since s œ 0 at t œ 0) Ê ds dt œ v œ 32t v! . At the top of the ball's path, v œ 0 Ê #
and the height is s œ 16 ˆ 3v#! ‰ v! ˆ 3v#! ‰ œ
v!# 64
3†640 64
œ
385
tœ
v! 3#
œ 30 ft.
11. From the symmetry of y œ 1 xn , n even, about the y-axis for 1 Ÿ x Ÿ 1, we have x œ 0. To find y œ MMx , we n use the vertical strips technique. The typical strip has center of mass: (µ x ßµ y ) œ ˆxß 1 2 x ‰ , length: 1 xn , width: dx, area: dA œ a1 xn b dx, mass: dm œ 1 † dA œ a1 xn b dx. The moment of the strip about the 1 1 n # n # " nb1 2n b 1 x-axis is µ y dm œ a1 x b dx Ê M œ ' a1 x b dx œ 2' " a1 2xn x2n b dx œ x 2x x ‘ #
œ1
2 n1
" #n 1
œ
x c1 # (n 1)(2n 1) 2(2n ") (n 1) (n 1)(#n 1)
œ
0 # 2n# 3n 1 4n 2 n 1 (n 1)(#n 1)
Also, M œ 'c1 dA œ 'c1 a1 xn b dx œ 2 '0 a1 xn b dx œ 2 x 1
yœ
Mx M
œ
1
#
†
2n (n 1)(2n 1)
1
(n 1) 2n
œ
xn b 1 ‘ " n1 !
n1
œ
2n# (n 1)(#n 1)
œ 2 ˆ1
" ‰ n1
#n 1 !
. œ
2n n1.
Therefore,
Ê ˆ!ß #n n 1 ‰ is the location of the centroid. As n Ä _, y Ä
n 2n 1
the limiting position of the centroid is ˆ!ß
" #
so
"‰ # .
12. Align the telephone pole along the x-axis as shown in the accompanying figure. The slope of the top length of pole is 9 ‰ ˆ 14.5 " 81 81 œ 8"1 † 40 † (14.5 9) œ 815.5 †40 40 11 ‰ y œ 891 8111†80 x œ 8"1 ˆ9 80 x is an
œ
11 81†80 .
Thus,
equation of the
line representing the top of the pole. Then, My œ 'a x † 1y# dx œ 1 '0 x 8"1 ˆ9 b
40
11 80
# x‰‘ dx
b 11 ‰# '040 x ˆ9 80 x dx; M œ 'a 1y# dx 40 40 11 ‰‘# ‰# dx. œ 1 '0 8"1 ˆ9 80 x dx œ 64"1 '0 ˆ9 11 80 x
œ
" 641
Thus, x œ
My M
¸
129,700 5623.3
¸ 23.06 (using a calculator to compute
the integrals). By symmetry about the x-axis, y œ 0 so the center of mass is about 23 ft from the top of the pole. 13. (a) Consider a single vertical strip with center of mass (µ x ßµ y ). If the plate lies to the right of the line, then µ µ b) $ dA Ê the plate's first moment the moment of this strip about the line x œ b is (x b) dm œ (x about x œ b is the integral ' (x b)$ dA œ ' $ x dA ' $ b dA œ My b$ A. (b) If the plate lies to the left of the line, the moment of a vertical strip about the line x œ b is ab µ x b dm œ ab µ x b $ dA Ê the plate's first moment about x œ b is ' (b x)$ dA œ ' b$ dA ' $ x dA œ b$ A My . 14. (a) By symmetry of the plate about the x-axis, y œ 0. A typical vertical strip has center of mass: (µ x ßµ y ) œ (xß 0), length: 4Èax, width: dx, area: 4Èax dx, mass: dm œ $ dA œ kx † 4Èax dx, for some a proportionality constant k. The moment of the strip about the y-axis is M œ ' µ x dm œ ' 4kx# Èax dx y
œ 4kÈa'0 x a
&Î#
dx œ
4kÈa 27
x
(Î# ‘ a
0
œ 4ka
"Î#
† a 2 7
(Î#
œ
œ 4kÈa'0 x$Î# dx œ 4kÈa 25 x&Î# ‘ 0 œ 4ka"Î# † 25 a&Î# œ a
Ê (xß y) œ
a
ˆ 5a ‰ 7 ß0
0
8ka% 7
. Also, M œ ' dm œ '0 4kxÈax dx
8ka$ 5
. Thus, x œ
a
My M
œ
8ka% 7
†
5 8ka$
œ
5 7
is the center of mass. y#
# # a (b) A typical horizontal strip has center of mass: (µ x ßµ y ) œ Œ 4a # ß y œ Š y 8a4a ß y‹ , length: a
width: dy, area: Ša œ 'c2a y kyk Ša 2a
a
y# 4a ‹
y# 4a ‹
dy, mass: dm œ $ dA œ kyk Ša
dy œ 'c2a y# Ša 0
y# 4a ‹
y# 4a ‹
dy '0 y# Ša 2a
dy. Thus, Mx œ ' µ y dm y# 4a ‹
dy
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
y# 4a
,
386
Chapter 6 Applications of Definite Integrals œ 'c2a Šay# 0
%
32a& 20a
œ 8a3
dy '0 Šay# 2a
y% 4a ‹ 8a% 3
y% 4a ‹
œ 0; My œ ' µ x dm œ 'c2a Š y 2a
32a& #0a
'c2a2a kyk ay# 4a# b Š 4a 4a y ‹ dy œ 32a" #
! y& #0a “ #a
dy œ ’ 3a y$ #
4a# 8a ‹
#
" 8a
œ
" 3 #a #
'c02a a16a% y y& b dy 32a" '02a a16a% y y& b dy œ 3#"a
œ
" 32a#
’8a% † 4a#
" 32a#
2a
œ
#
#
64a' 6 “
œ
" 16a#
#
’8a% y# 32a' 3 ‹
Š32a'
œ
#a
œ2†
#
16a% 4 ‹
#
Š2a † 4a
" #a
œ
! y' 6 “ #a
1 3#a#
’8a% y#
† 32 a32a' b œ
4 3
#a y' 6 “!
a% ;
'c2a2a kyk a4a# y# b dy
" 4a
%
" 4a
dy
" 16a#
'c02a a4a# y y$ b dy 4a" '02a a4a# y y$ b dy œ 4a" ’2a# y# y4 “ !
" 4a
yœ
c2a
’8a% † 4a#
M œ ' dm œ 'c2a kyk Š 4a 4ay ‹ dy œ
y# 4a ‹
kyk Ša
' kyk a16a% y% b dy
#
#
#a y& #0a “ !
2a
œ
64a' 6 “
’ 3a y$
%
%
$
a8a 4a b œ 2a . Therefore, x œ
" 4a
’2a# y#
œ ˆ 34 a% ‰ ˆ 2a"$ ‰ œ
My M
#a y% 4 “!
2a 3
and
œ 0 is the center of mass.
Mx M
15. (a) On [0ß a] a typical @/3-+6 strip has center of mass: (µ x ßµ y ) œ Šx,
È b# x # È a# x# ‹, #
length: Èb# x# Èa# x# , width: dx, area: dA œ ŠÈb# x# Èa# x# ‹ dx, mass: dm œ $ dA œ $ ŠÈb# x# Èa# x# ‹ dx. On [aß b] a typical @/3-+6 strip has center of mass: È # # (µ x ßµ y ) œ Šxß b # x ‹ , length: Èb# x# , width: dx, area: dA œ Èb# x# dx,
mass: dm œ $ dA œ $ Èb# x# dx. Thus, Mx œ ' µ y dm œ '0
a
" #
ŠÈb# x# Èa# x# ‹ $ ŠÈb# x# Èa# x# ‹ dx 'a
b
" #
Èb# x# $ Èb# x# dx
œ
$ #
'0a cab# x# b aa# x# bd dx #$ 'ab ab# x# b dx œ #$ '0a ab# a# b dx #$ 'ab ab# x# b dx
œ
$ #
cab# a# b xd ! #$ ’b# x
œ
$ #
aab# a$ b #$ Š 23 b$ ab#
a
b
x$ 3 “a
œ a$ 3‹
$ #
b$ 3‹
cab# a# b ad #$ ’Šb$
œ
$ b$ 3
$ a$ 3
œ $ Šb
$
a$ 3 ‹;
a$ 3 ‹“
Š b# a
My œ ' µ x dm
œ '0 x$ ŠÈb# x# Èa# x# ‹ dx 'a x$ Èb# x# dx a
b
œ $ '0 x ab# x# b a
œ
$ #
”
2 ab # x # b 3
$Î#
"Î#
dx $ '0 x aa# x# b a
a
$ 2 aa • #”
#
x# b 3
$Î#
# $Î#
#
œ ’ab a b
# $Î#
ab b
a
dx $ 'a x ab# x# b
$ 2 ab • #”
b
#
!
0
$ 3
"Î#
# $Î#
$ 3
“ ’0 aa b
x# b 3
"Î#
$Î#
• a
$ 3
“ ’0 ab# a# b #
#
$Î#
We calculate the mass geometrically: M œ $ A œ $ Š 14b ‹ $ Š 14a ‹ œ œ
$ ab $ a $ b 3
yœ (b) lim
œ
Mx M 4
b Ä a 31
†
4 $1 ab# a# b #
#
4 aa abb b 31(ab)
Ša
#
ab b ab
#
œ
4 31
$
$
a Š bb# a# ‹ œ
dx
b
4 (b a) aa# ab b# b 31 (b a)(b a)
“œ
$1 4
$ b$ 3
$ a$ 3
œ
$ ab $ a $ b 3
ab# a# b . Thus, x œ
œ Mx ; My M
œ
4 aa# ab b# b 31(a b)
2a 1
2a ‰ Ê (xß y) œ ˆ 2a 1 ß 1 is the limiting
; likewise
.
‹ œ ˆ 341 ‰ Š a
#
a# a# ‹ aa
#
œ ˆ 341 ‰ Š 3a 2a ‹ œ
position of the centroid as b Ä a. This is the centroid of a circle of radius a (and we note the two circles coincide when b œ a).
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 6 Additional and Advanced Exercises 16. Since the area of the traingle is 36, the diagram may be labeled as shown at the right. The centroid of the triangle is ˆ 3a , 24 ‰ a . The shaded portion is 144 36 œ 108. Write ax, yb for the centroid of the remaining region. The centroid of the whole square is obviously a6, 6b. Think of the square as a sheet of uniform density, so that the centroid of the square is the average of the centroids of the two regions, weighted by area: 'œ
$'ˆ 3a ‰ "!)axb "%%
and ' œ
‰ $'ˆ 24 a "!)ayb "%%
which we solve to get x œ )
a *
and y œ
)a a " b . a
Set
x œ 7 in. (Given). It follows that a œ *, whence y œ œ
7 "*
'% *
in. The distances of the centroid ax, yb from the other sides are easily computed. (Note that if we set y œ 7 in.
above, we will find x œ 7 "* .) 17. The submerged triangular plate is depicted in the figure at the right. The hypotenuse of the triangle has slope 1 Ê y (2) œ (x 0) Ê x œ (y 2) is an equation of the hypotenuse. Using a typical horizontal strip, the fluid strip strip pressure is F œ ' (62.4) † Š depth ‹ † Š length ‹ dy
c2
c2
œ 'c6 (62.4)(y)[(y 2)] dy œ 62.4 'c6 ay# 2yb dy $
œ 62.4 ’ y3 y# “
#
‰‘ œ (62.4) ˆ 83 4‰ ˆ 216 3 36
'
‰ œ (62.4) ˆ 208 3 32 œ
(62.4)(112) 3
¸ 2329.6 lb
18. Consider a rectangular plate of length j and width w. The length is parallel with the surface of the fluid of weight density =. The force on one side of the plate is F œ ='cw (y)(j) dy œ =j ’ y# “ 0
#
! w
œ
=jw# #
. The
average force on one side of the plate is Fav œ œ
= w
#
’ y# “
! w
œ
=w #
. Therefore the force
= w
'c0w (y)dy
=jw# #
‰ œ ˆ =w # (jw) œ (the average pressure up and down) † (the area of the plate).
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
387
388
Chapter 6 Applications of Definite Integrals
NOTES:
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
CHAPTER 7 TRANSCENDENTAL FUNCTIONS 7.1 INVERSE FUNCTIONS AND THEIR DERIVATIVES 1. Yes one-to-one, the graph passes the horizontal line test. 2. Not one-to-one, the graph fails the horizontal line test. 3. Not one-to-one since (for example) the horizontal line y œ 2 intersects the graph twice. 4. Not one-to-one, the graph fails the horizontal line test. 5. Yes one-to-one, the graph passes the horizontal line test 6. Yes one-to-one, the graph passes the horizontal line test 7. Not one-to-one since the horizontal line y œ 3 intersects the graph an infinite number of times. 8. Yes one-to-one, the graph passes the horizontal line test 9. Yes one-to-one, the graph passes the horizontal line test 10. Not one-to-one since (for example) the horizontal line y œ 1 intersects the graph twice. 11. Domain: 0 x Ÿ 1, Range: 0 Ÿ y
13. Domain: 1 Ÿ x Ÿ 1, Range: 1# Ÿ y Ÿ
12. Domain: x 1, Range: y 0
1 #
14. Domain: _ x _, Range: 1# y Ÿ
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
1 #
390
Chapter 7 Transcendental Functions
15. Domain: 0 Ÿ x Ÿ 6, Range: 0 Ÿ y Ÿ 3
16. Domain: 2 Ÿ x Ÿ 1, Range: 1 Ÿ y 3
17. The graph is symmetric about y œ x.
(b) y œ È1 x# Ê y# œ 1 x# Ê x# œ 1 y# Ê x œ È1 y# Ê y œ È1 x# œ f " (x) 18. The graph is symmetric about y œ x.
yœ
" x
Ê xœ
" y
Ê yœ
" x
œ f " (x)
19. Step 1: y œ x# 1 Ê x# œ y 1 Ê x œ Èy 1 Step 2: y œ Èx 1 œ f " (x) 20. Step 1: y œ x# Ê x œ Èy, since x Ÿ !. Step 2: y œ Èx œ f " (x) 21. Step 1: y œ x$ 1 Ê x$ œ y 1 Ê x œ (y 1)"Î$ Step 2: y œ $Èx 1 œ f " (x) 22. Step 1: y œ x# 2x 1 Ê y œ (x 1)# Ê Èy œ x 1, since x 1 Ê x œ 1 Èy Step 2: y œ 1 Èx œ f " (x) 23. Step 1: y œ (x 1)# Ê Èy œ x 1, since x 1 Ê x œ Èy 1 Step 2: y œ Èx 1 œ f " (x) 24. Step 1: y œ x#Î$ Ê x œ y$Î# Step 2: y œ x$Î# œ f " (x)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 7.1 Inverse Functions and Their Derivatives 25. Step 1: y œ x& Ê x œ y"Î& 5 Step 2: y œ È x œ f " (x); Domain and Range of f " : all reals; &
f af " (x)b œ ˆx"Î& ‰ œ x and f " (f(x)) œ ax& b
"Î&
œx
"Î%
œx
26. Step 1: y œ x% Ê x œ y"Î% Step 2: y œ %Èx œ f " (x); Domain of f " : x 0, Range of f " : y 0; %
f af " (x)b œ ˆx"Î% ‰ œ x and f " (f(x)) œ ax% b
27. Step 1: y œ x$ 1 Ê x$ œ y 1 Ê x œ (y 1)"Î$ Step 2: y œ $Èx 1 œ f " (x); Domain and Range of f " : all reals; $
f af " (x)b œ ˆ(x 1)"Î$ ‰ 1 œ (x 1) 1 œ x and f " (f(x)) œ aax$ 1b 1b 28. Step 1: y œ
" #
x
7 #
Ê "
" #
xœy
7 #
Step 2: y œ
" x#
Ê x# œ
" Èx
œ f " (x)
" y
Ê xœ
7 #
30. Step 1: y œ
" x$
" x"Î$ "
Step 2: y œ Domain of f
f af " axbb œ
" y
Ê xœ
Step 2: y
32. Step 1: y œ
œ
" Š "x ‹
œ x since x 0
" y"Î$
: x Á 0, Range of f " : y Á 0;
" $ ax "Î$ b
œ
" x "
œ x and f " afaxbb œ ˆ x"$ ‰
x3 x 2 Ê yax 2b 3 1 œ 2x axb; x1 œ f "
f af " axbb œ
" É x"#
3 " " œÉ (x); x œ f
31. Step 1: y œ Domain of f
œx
" Èy
Šx‹
Ê x$ œ
"Î$
œ x and f " (f(x)) œ 2 ˆ "# x 7# ‰ 7 œ (x 7) 7 œ x
Domain of f " : x 0, Range of f " : y 0; f af " (x)b œ "" # œ "" œ x and f " (f(x)) œ Š Èx ‹
œ ax$ b
Ê x œ 2y 7
Step 2: y œ 2x 7 œ f (x); Domain and Range of f " : all reals; f af " (x)b œ "# (2x 7) 7# œ ˆx 7# ‰ 29. Step 1: y œ
"Î$
"Î$
œ ˆ x" ‰
"
œx
œ x 3 Ê x y 2y œ x 3 Ê x y x œ 2y 3 Ê x œ
: x Á 1, Range of f " : y Á 2;
b3‰ ˆ 2x xc1 3 b3‰ ˆ 2x xc1 2 Èx Èx 3
œ
a2x 3b 3ax 1b a2x 3b 2ax 1b
œ
5x 5
œ x and f " afaxbb œ
3 2ˆ xx b c2‰ 3 3 ˆ xx b c2‰ 1
œ
2y 3 y1
2 ax 3 b 3 a x 2 b ax 3 b ax 2 b
œ
5x 5
œx
Ê yˆÈx 3‰ œ Èx Ê yÈx 3y œ Èx Ê yÈx Èx œ 3y Ê x œ Š y 3y 1‹
2
2
‰ œ f 1 a xb ; Step 2: y œ ˆ x 3x 1
Domain of f " : Ð_, 0Ó a1, _b, Range of f " : Ò0, 9Ñ a9, _b; f af " axbb œ f
"
2 Ɉ x 3x c1‰ 2
Ɉ x 3x c1‰ 3
afaxbb œ
; If x 1 or x Ÿ 0 Ê
Èx
3Š È x c 3 ‹
Èx
Š Èx c 3 ‹ 1
3x x1
0Ê
2 Ɉ x 3x c1‰ 2
Ɉ x 3x c1‰ 3
œ
3x xc1 3x xc1 3
œ
3x 3x 3ax 1b
œ
2
œ
9x ˆÈ x ˆÈ x 3 ‰‰ 2
œ
9x 9
œx
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
3x 3
œ x and
391
392
Chapter 7 Transcendental Functions
33. Step 1: y œ x2 2x, x Ÿ 1 Ê y 1 œ ax 1b2 , x Ÿ 1 Ê Èy 1 œ x 1, x Ÿ 1 Ê x œ 1 Èy 1 Step 2: y œ 1 Èx 1 œ f 1 axb; Domain of f " : Ò1, _Ñ, Range of f " : Ð_, 1Ó; 2
f af " axbb œ Š1 Èx 1‹ 2Š1 Èx 1‹ œ 1 2Èx 1 x 1 2 2Èx 1 œ x and f " afaxbb œ 1 Èax2 2xb 1, x Ÿ 1 œ 1 Éax 1b2 , x Ÿ 1 œ 1 lx 1l œ 1 a1 xb œ x 34. Step 1: y œ a2x3 1b 3 x Step 2: y œ É
5
1 2
1 Î5
Ê y5 œ 2x3 1 Ê y5 1 œ 2x3 Ê
y5 1 2
3 y œ x3 Ê x œ É
5
1 2
œ f 1 ax b ;
Domain of f " : a_, _b, Range of f " : a_, _b; 3 x f af " axbb œ Œ2ŠÉ
5
1 2 ‹
3
1 Î5
1
œ Š 2Š x
5
1 2 ‹
1‹
1 Î5
œ aax5 1b 1b
1 Î5
œ ax5 b
1 Î5
œ x and
5
1Î5 ’a2x3 1b “ 1
3
f " afaxbb œ Ê
2
3 a2x σ
35. (a) y œ 2x 3 Ê 2x œ y 3 Ê x œ y# 3# Ê f " (x) œ (c)
df ¸ dx xœ 1
36. (a) y œ
" 5
œ 2,
df c" dx ¹ xœ1
x7 Ê
" 5
œ
(c)
œ
" df c" 5 , dx ¹ xœ$%Î&
(c)
œ 4,
df c" dx ¹ xœ3
38. (a) y œ 2x# Ê x# œ Ê xœ (c)
df ¸ dx xœ&
" È2
" #
3
3 #
" #
"
(b)
(x) œ 5x 35
œ5
œ
(b) 5 4
x 4
" 4
(b)
y
Èy Ê f
3 2x œÉ 2 œ x
(b) x #
37. (a) y œ 5 4x Ê 4x œ 5 y Ê x œ 54 y4 Ê f " (x) œ df ¸ dx xœ1Î#
1 b 1 2
xœy7
Ê x œ 5y 35 Ê f df ¸ dx xœ 1
3
"
(x) œ
È x#
œ 4xk xœ5 œ 20,
df c" dx ¹ xœ&0
œ
" #È 2
x"Î# ¹
xœ50
œ
" #0
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 7.1 Inverse Functions and Their Derivatives $
3 3 39. (a) f(g(x)) œ ˆÈ x‰ œ x, g(f(x)) œ È x3 œ x
w
#
w
(b)
w
(c) f (x) œ 3x Ê f (1) œ 3, f (1) œ 3; gw (x) œ 3" x#Î$ Ê gw (1) œ 3" , gw (1) œ
" 3
(d) The line y œ 0 is tangent to f(x) œ x$ at (!ß !); the line x œ 0 is tangent to g(x) œ $Èx at (0ß 0)
40. (a) h(k(x)) œ
" 4
ˆ(4x)"Î$ ‰$ œ x,
k(h(x)) œ Š4 † (c) hw (x) œ w
k (x) œ
x$ 4‹
"Î$
(b)
œx
3x# w w 4 Ê h (2) œ 3, h (2) 4 #Î$ Ê kw (2) œ "3 , 3 (4x)
œ 3; kw (2) œ
(d) The line y œ 0 is tangent to h(x) œ
x$ 4
" 3
at (!ß !);
the line x œ 0 is tangent to k(x) œ (4x)"Î$ at (!ß !) œ 3x# 6x Ê
41.
df dx
43.
df " dx ¹ x œ 4
df c" dx ¹ x œ f(3)
df " dx ¹ x œ f(2)
œ
45. (a) y œ mx Ê x œ
" m
œ
(b) The graph of y œ f 46. y œ mx b Ê x œ
y m
"
df dx
º
œ
xœ2
"
df dx
œ
º
xœ3
" ˆ 3" ‰
œ3
y Ê f " (x) œ "
" 9
œ
" m
œ 2x 4 Ê
42.
df dx
44.
dg " dx ¹x œ 0
b m
dg " dx ¹ x œ f(0)
œ
"
dg dx
º
œ
xœ0
"
df dx
º
œ
xœ5
œ
" 6
" 2
x
(x) is a line through the origin with slope
œ
df " dx ¹ x œ f(5)
Ê f " (x) œ
" m
x
b m;
" m.
the graph of f " (x) is a line with slope
" m
and y-intercept mb .
47. (a) y œ x 1 Ê x œ y 1 Ê f " (x) œ x 1 (b) y œ x b Ê x œ y b Ê f " (x) œ x b (c) Their graphs will be parallel to one another and lie on opposite sides of the line y œ x equidistant from that line.
48. (a) y œ x 1 Ê x œ y 1 Ê f " (x) œ 1 x; the lines intersect at a right angle (b) y œ x b Ê x œ y b Ê f " (x) œ b x; the lines intersect at a right angle (c) Such a function is its own inverse.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
393
394
Chapter 7 Transcendental Functions
49. Let x" Á x# be two numbers in the domain of an increasing function f. Then, either x" x# or x" x# which implies f(x" ) f(x# ) or f(x" ) f(x# ), since f(x) is increasing. In either case, f(x" ) Á f(x# ) and f is one-to-one. Similar arguments hold if f is decreasing. 50. f(x) is increasing since x# x" Ê
" 3
x#
5 6
" 3
x" 56 ;
df dx
œ
" 3
51. f(x) is increasing since x# x" Ê 27x$# 27x"$ ; y œ 27x$ Ê x œ df dx
œ 81x# Ê
df " dx
œ
" ¸ 81x# 13 x"Î$
œ
" 9x#Î$
œ
" 9
df c" dx
Ê " 3
œ
df dx
œ 24x# Ê
dx
œ
" ¸ 24x# 12 Ð1 xÑ"Î$
œ
œ3
y"Î$ Ê f " (x) œ
" 3
x"Î$ ;
x#Î$
52. f(x) is decreasing since x# x" Ê 1 8x$# 1 8x"$ ; y œ 1 8x$ Ê x œ df c"
" ˆ "3 ‰
" 6(" x)#Î$
" #
(1 y)"Î$ Ê f " (x) œ
" #
(1 x)"Î$ ;
œ "6 (1 x)#Î$
53. f(x) is decreasing since x# x" Ê (1 x# )$ (1 x" )$ ; y œ (1 x)$ Ê x œ 1 y"Î$ Ê f " (x) œ 1 x"Î$ ; df dx
œ 3(1 x)# Ê
df c" dx
œ
" 3(1 x)# ¹ 1cx"Î$ &Î$
54. f(x) is increasing since x# x" Ê x# df dx
œ
5 3
x#Î$ Ê
df c" dx
œ
5 3
" ¹ x#Î$ x$Î&
œ
" 3x#Î$
œ "3 x#Î$
&Î$
x" ; y œ x&Î$ Ê x œ y$Î& Ê f " (x) œ x$Î& ; œ
3 5x#Î&
œ
3 5
x#Î&
55. The function g(x) is also one-to-one. The reasoning: f(x) is one-to-one means that if x" Á x# then f(x" ) Á f(x# ), so f(x" ) Á f(x# ) and therefore g(x" ) Á g(x# ). Therefore g(x) is one-to-one as well. 56. The function h(x) is also one-to-one. The reasoning: f(x) is one-to-one means that if x" Á x# then f(x" ) Á f(x# ), so " " f(x" ) Á f(x# ) , and therefore h(x" ) Á h(x# ). 57. The composite is one-to-one also. The reasoning: If x" Á x# then g(x" ) Á g(x# ) because g is one-to-one. Since g(x" ) Á g(x# ), we also have f(g(x" )) Á f(g(x# )) because f is one-to-one. Thus, f ‰ g is one-to-one because x" Á x# Ê f(g(x" )) Á f(g(x# )). 58. Yes, g must be one-to-one. If g were not one-to-one, there would exist numbers x" Á x# in the domain of g with g(x" ) œ g(x# ). For these numbers we would also have f(g(x" )) œ f(g(x# )), contradicting the assumption that f ‰ g is one-to-one. 59. (g ‰ f)(x) œ x Ê g(f(x)) œ x Ê gw (f(x))f w (x) œ 1 60. W(a) œ 'f(a) 1 ’af " (y)b a# “ dy œ 0 œ 'a 21x[f(a) f(x)] dx œ S(a); Ww (t) œ 1’af " (f(t))b a# “ f w (t) f(a)
a
#
#
œ 1 at# a# b f w (t); also S(t) œ 21f(t)'a x dx 21'a xf(x) dx œ c1f(t)t# 1f(t)a# d 21'a xf(x) dx Ê Sw (t) t
t
t
œ 1t# f w (t) 21tf(t) 1a# f w (t) 21tf(t) œ 1 at# a# b f w (t) Ê Ww (t) œ Sw (t). Therefore, W(t) œ S(t) for all t − [aß b]. 61-68. Example CAS commands: Maple: with( plots );#63 f := x -> sqrt(3*x-2); domain := 2/3 .. 4; x0 := 3; Df := D(f);
# (a)
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Section 7.1 Inverse Functions and Their Derivatives
395
plot( [f(x),Df(x)], x=domain, color=[red,blue], linestyle=[1,3], legend=["y=f(x)","y=f '(x)"], title="#61(a) (Section 7.1)" ); q1 := solve( y=f(x), x ); # (b) g := unapply( q1, y ); m1 := Df(x0); # (c) t1 := f(x0)+m1*(x-x0); y=t1; m2 := 1/Df(x0); # (d) t2 := g(f(x0)) + m2*(x-f(x0)); y=t2; domaing := map(f,domain); # (e) p1 := plot( [f(x),x], x=domain, color=[pink,green], linestyle=[1,9], thickness=[3,0] ): p2 := plot( g(x), x=domaing, color=cyan, linestyle=3, thickness=4 ): p3 := plot( t1, x=x0-1..x0+1, color=red, linestyle=4, thickness=0 ): p4 := plot( t2, x=f(x0)-1..f(x0)+1, color=blue, linestyle=7, thickness=1 ): p5 := plot( [ [x0,f(x0)], [f(x0),x0] ], color=green ): display( [p1,p2,p3,p4,p5], scaling=constrained, title="#63(e) (Section 7.1)" ); Mathematica: (assigned function and values for a, b, and x0 may vary) If a function requires the odd root of a negative number, begin by loading the RealOnly package that allows Mathematica to do this. See section 2.5 for details. (x 1) œ '0 tx e t dt œ lim ctx e t d b0 x '0 tx 1 e t dt œ lim ˆ beb 0x e! ‰ x>(x) œ x>(x) bÄ_
(c) >(n 1) œ n>(n) œ n!: n œ 0: >(0 1) œ >(1) œ 0!; n œ k: Assume >(k 1) œ k! n œ k 1: >(k 1 1) œ (k 1) >(k 1) œ (k 1)k! œ (k 1)! Thus, >(n 1) œ n>(n) œ n! for every positive integer n.
x
bÄ_
for some k 0; from part (b) induction hypothesis definition of factorial
x n n 32. (a) >(x) ¸ ˆ xe ‰ É 2x1 and n>(n) œ n! Ê n! ¸ n ˆ ne ‰ É 2n1 œ ˆ ne ‰ È2n1
(b)
533
n 10 20 30 40 50 60
ˆ ne ‰n È2n1 3598695.619 2.4227868 ‚ 10") 2.6451710 ‚ 10$# 8.1421726 ‚ 10%( 3.0363446 ‚ 10'% 8.3094383 ‚ 10)"
calculator 3628800 2.432902 ‚ 10") 2.652528 ‚ 10$# 8.1591528 ‚ 10%( 3.0414093 ‚ 10'% 8.3209871 ‚ 10)"
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
534
Chapter 8 Techniques of Integration
(c)
ˆ ne ‰n È2n1 3598695.619
n 10 ÐÑ
cos 3x
2e2x
ÐÑ
1 3 sin
4e2x
ÐÑ
19 cos 3x
33. e2x
Iœ
e2x 3
sin 3x
2e2x 9
13 9
Iœ
e2x 9
(3 sin 3x 2 cos 3x) Ê I œ
e2x 13
(3 sin 3x 2 cos 3x) C
sin 4x
3e3x
ÐÑ
4" cos 4x
9e3x
ÐÑ
" 16 sin 4x
3x
I œ e4 cos 4x 35.
calculator 3628800
3x
cos 3x 49 I Ê
ÐÑ
34. e3x
ˆ ne ‰n È2n1 e1Î12n 3628810.051
3e3x 16
sin 4x
I Ê
9 16
sin 3x
ÐÑ
sin x
3 cos 3x
ÐÑ
cos x
9 sin 3x
ÐÑ
sin x
Iœ
25 16
e3x 16
(3 sin 4x 4 cos 4x) Ê I œ
e3x 25
(3 sin 4x 4 cos 4x) C
I œ sin 3x cos x 3 cos 3x sin x 9I Ê 8I œ sin 3x cos x 3 cos 3x sin x Ê I œ sin 3x cos x83 cos 3x sin x C 36.
cos 5x
ÐÑ
sin 4x
sin 5x
ÐÑ
"4 cos 4x
25cos 5x
ÐÑ
" 16 sin 4
I œ "4 cos 5x cos 4x Ê Iœ
" 9
sin 5x sin 4x
9 I Ê 16 I œ "4 cos 5x cos 4x
5 16
sin 5x sin 4x
sin bx
aeax
ÐÑ
"b cos bx
a# eax
ÐÑ
b"# sin bx
ax
I œ eb cos bx Ê Iœ
25 16
(4 cos 5x cos 4x 5 sin 5x sin 4x) C ÐÑ
37. eax
5 16
eax a# b#
aeax b#
sin bx
a# b#
I Ê Ša
#
b# b# ‹ I
œ
eax b#
(a sin bx b cos bx)
(a sin bx b cos bx) C
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
Chapter 8 Additional and Advanced Exercises ÐÑ
38. eax
cos bx
aeax
ÐÑ
" b
a# eax
ÐÑ
b"# cos bx
Iœ
eax b
sin bx
Ê Iœ
" x
cos bx
a# b#
I Ê Ša
#
b# b# ‹ I
eax b#
œ
(a cos bx b sin bx)
(a cos bx b sin bx) C
eax a# b#
39. ln (ax)
aeax b#
sin bx
ÐÑ
1
ÐÑ
x
I œ x ln (ax) ' ˆ "x ‰ x dx œ x ln (ax) x C 40. ln (ax) " x
Iœ
" 3
ÐÑ
x#
ÐÑ
" 3
x$
x$ ln (ax) ' ˆ "x ‰ Š x3 ‹ dx œ $
41.
' 1 dxsin x œ '
42.
' 1 sin dxx cos x œ '
œ'
2 dz ‹ 1 z# 1 Š 2z # ‹ 1 z
Š
2 dz (1 z)#
" 3
x$ ln (ax) 9" x$ C
œ
2 1z
œ'
2 dz ‹ 1 z# 2z 1 z# 1 Š ‹ 1 z# 1 z#
Š
Cœ
2 1 tan ˆ #x ‰
2 dz 1 z# 2z 1 z#
C
œ'
œ ln k1 zk C
dz 1z
œ ln ¸tan ˆ x# ‰ 1¸ C 43.
'01Î2 1 dxsin x œ '01
44.
'11ÎÎ32
45.
) '01Î2 2 dcos '1 ) œ 0
œ
46.
dx 1 cos x
1 3È 3
'12Î12Î3
œ
" È2
1
Š
2 dz (1 z)#
œ '1ÎÈ3
2 dz ‹ 1 z# 1 z# 1Š ‹ 1 z#
Š
2 dz ‹ 1 z# 1 z# 2Š ‹ 1 z#
cos ) d) sin ) cos ) sin )
È$ z# “ 4 "
' sin t dt cos t œ ' œ
'11ÎÈ3
œ '0
1
œ '0
1
"
œ 1 2 z ‘ ! œ (1 2) œ 1
dz z#
" œ 1z ‘ "ÎÈ$ œ È3 1
2 dz 2 2z# 1 z#
œ '0
1
œ
2 dz z# 3
2 È3
’tan"
z È3 “
" !
œ
2 È3
tan"
" È3
È 31 9
œ ’ "# ln z
47.
œ
2 dz ‹ 1 z# 2z 1Š ‹ 1 z#
Š
È3
œ '1
È3
z# ‹ Š 2 dz# ‹ 1 z# 1z
Š1 Ô 2z Š1
z# ‹
× 2z # Š 1 z# ‹Ø Õ Š1 z# ‹
œ '1
œ Š "# ln È3 43 ‹ ˆ0 4" ‰ œ
2 dz ‹ 1 z# 2z 1 z# Š ‹ 1 z# 1 z#
Š
œ'
2 dz 2z 1 z#
œ'
2 a1 z# b dz 2z 2z$ 2z 2z$
ln 3 4
1 z# 2z
œ
" 4
œ
" È2
1 2 ln ¹ zz ¹C 1 È2
(ln 3 2) œ
" #
dz
" #
2 dz (z 1)# 2
È3
œ '1
Šln È3 1‹
È
tan ˆ t ‰ 1 È2
ln º tan ˆ #t ‰ 1 È2 º C #
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
535
536 48.
Chapter 8 Techniques of Integration
t dt ' 1cos cos 'Š t œ
œ'
49.
a1 z# b dz a1 z # b z #
1 z# ‹ Š 2 dz# ‹ 1 z# 1 z # 1 Š 1 z# ‹ 1z
œ'
dz z # a1 z # b
œ' '
' sec ) d) œ ' cosd) ) œ ' Š
2 dz ‹ 1 z# # Š 1 z# ‹ 1 z
2 a1 z# b dz a1 z # b # a 1 z # b a 1 z # b dz 1 z#
œ'
dz z#
œ'
2 dz 1 z#
œ'
œ ln k1 zk ln k1 zk C œ ln »
50.
' csc ) d) œ ' sind)) œ ' Š
2 dz ‹ 1 z# 2z Š ‹ 1 z#
1 tan Š )# ‹
2'
1 tan Š )# ‹ »
œ'
dz z
œ'
dz z# 1
2 dz (1 z)(1 z)
2 a1 z# b dz a1 z # b a 1 z # 1 z # b
œ "z 2 tan" z C œ cot ˆ #t ‰ t C œ'
dz 1z
'
dz 1z
C
œ ln kzk C œ ln ¸tan #) ¸ C
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
CHAPTER 9 FIRST-ORDER DIFFERENTIAL EQUATIONS 9.1 SOLUTIONS, SLOPE FIELDS AND EULER'S METHOD 1. y w œ x y Ê slope of 0 for the line y œ x. For x, y 0, y w œ x y Ê slope 0 in Quadrant I. For x, y 0, y w œ x y Ê slope 0 in Quadrant III. For kyk kxk, y 0, x 0, y w œ x y Ê slope 0 in Quadrant II above y œ x. For kyk kxk, y 0, x 0, y w œ x y Ê slope 0 in Quadrant II below y œ x. For kyk kxk, x 0, y 0, y w œ x y Ê slope 0 in Quadrant IV above y œ x. For kyk kxk, x 0, y 0, y w œ x y Ê slope 0 in Quadrant IV below y œ x. All of the conditions are seen in slope field (d). 2. y w œ y 1 Ê slope is constant for a given value of y, slope is 0 for y œ 1, slope is positive for y 1 and negative for y 1. These characteristics are evident in slope field (c).
3. y w œ xy Ê slope œ 1 on y œ x and 1 on y œ x. y w œ xy Ê slope œ 0 on the y-axis, excluding a0, 0b, and is undefined on the x-axis. Slopes are positive for x 0, y 0 and x 0, y 0 (Quadrants II and IV), otherwise negative. Field (a) is consistent with these conditions.
4. y w œ y2 x2 Ê slope is 0 for y œ x and for y œ x. For kyk kxk slope is positive and for kyk kxk slope is negative. Field (b) has these characteristics.
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
538
Chapter 9 First-Order Differential Equations
5.
6.
7. y œ 1 '1 at yatbbdt Ê x
8. y œ '1 1t dt Ê x
dy dx
dy dx
œ x yaxb; ya1b œ 1 '1 at yatbbdt œ 1; 1
œ x1 ; ya1b œ '1 1t dt œ 0; 1
9. y œ 2 '0 a1 yatbbsin t dt Ê x
dy dx
dy dx
dy dx
œ x y, ya1b œ 1
œ x1 , ya1b œ 0
œ a1 yaxbbsin x; ya0b œ 2 '0 a1 yatbbsin t dt œ 2; 0
dy dx
œ a1 ybsin x,
ya0b œ 2 10. y œ 1 '0 yatb dt Ê x
dy dx
œ yaxb; ya0b œ 1 '0 yatb dt œ 1; 0
1 ‰ # (.5)
11. y" œ y! Š1
y! x! ‹
dx œ 1 ˆ1
y# œ y " Š 1
y" x" ‹
dx œ 0.25 ˆ1
y$ œ y # Š 1
y# x# ‹
dx œ 0.3 ˆ1
dy dx
ˆ x" ‰ y œ 1 Ê P(x) œ
Ê yœ
" x
" x
' x † 1 dx œ x" Š x#
Ê y(3.5) œ
#
3.5 #
4 3.5
œ
4.25 7
, Q(x) œ 1 Ê
œ y, ya0b œ 1
œ 0.25,
0.25 ‰ (.5) 2.5
0.3 ‰ 3 (.5)
dy dx
œ 0.3,
œ 0.75;
' P(x) dx œ ' x" dx œ ln kxk œ ln x, x 0 Ê v(x) œ eln x œ x
C‹ ; x œ 2, y œ 1 Ê 1 œ 1
C 2
Ê C œ 4 Ê y œ
x #
4 x
¸ 0.6071
12. y" œ y! x! (1 y! ) dx œ 0 1(1 0)(.2) œ .2, y# œ y" x" (1 y" ) dx œ .2 1.2(1 .2)(.2) œ .392, y$ œ y# x# (1 y# ) dx œ .392 1.4(1 .392)(.2) œ .5622; dy 1 y
œ x dx Ê ln k1 yk œ
x# #
C; x œ 1, y œ 0 Ê ln 1 œ
" #
#
C Ê C œ #" Ê ln k1 yk œ x#
" #
#
Ê y œ 1 ea1x bÎ2 Ê y(1.6) ¸ .5416 13. y" œ y! (2x! y! 2y! ) dx œ 3 [2(0)(3) 2(3)](.2) œ 4.2, y# œ y" (2x" y" 2y" ) dx œ 4.2 [2(.2)(4.2) 2(4.2)](.2) œ 6.216, y$ œ y# (2x# y# 2y# ) dx œ 6.216 [2(.4)(6.216) 2(6.216)](.2) œ 9.6969; dy dx
œ 2y(x 1) Ê
dy y
œ 2(x 1) dx Ê ln kyk œ (x 1)# C; x œ 0, y œ 3 Ê ln 3 œ 1 C Ê C œ ln 3 1
Ê ln y œ (x 1)# ln 3 1 Ê y œ eÐx1Ñ ln 31 œ eln 3 ex 2x œ 3exÐx2Ñ Ê y(.6) ¸ 14.2765 #
#
14. y" œ y! y#! (1 2x! ) dx œ 1 1# [1 2(1)](.5) œ .5, y# œ y" y#" (1 2x" ) dx œ .5 (.5)# [1 2(.5)](.5) œ .5, y$ œ y# y## (1 2x# ) dx œ .5 (.5)# [1 2(0)](.5) œ .625; dy y#
œ (1 2x) dx Ê y" œ x x# C; x œ 1, y œ 1 Ê 1 œ 1 (1)# C Ê C œ 1 Ê
Ê yœ
" 1 x x#
Ê y(.5) œ
" 1 .5 (.5)#
œ4
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
" y
œ 1 x x#
Section 9.1 Solutins, Slope Fields and Euler's Method
539
#
15. y" œ y! 2x! ex! dx œ 2 2(0)(.1) œ 2, # # y# œ y" 2x" ex" dx œ 2 2(.1) eÞ1 (.1) œ 2.0202, # # y$ œ y# 2x# ex# dx œ 2.0202 2(.2) eÞ2 (.1) œ 2.0618, # # # # dy œ 2xex dx Ê y œ ex C; y(0) œ 2 Ê 2 œ 1 C Ê C œ 1 Ê y œ ex 1 Ê y(.3) œ eÞ3 1 ¸ 2.0942 16. y" œ y! ay! ex! b dx œ 2 a2 † e0 b (.5) œ 3, y2 œ y1 ay1 ex1 b dx œ 3 a3 † e0.5 b (.5) œ 5.47308, y3 œ y2 ay2 ex2 b dx œ 5.47308 a5.47308 † e1.0 b (.5) œ 12.9118, dy dx
œ y ex Ê
Ê y œ 2ee 17. y" y# y$ y% y& dy y
x
œ ex dx Ê lnlyl œ ex C; x œ 0, y œ 2 Ê ln 2 œ 1 C Ê C œ ln 2 1 Ê lnlyl œ ex ln 2 1
dy y
"
Ê ya1.5b œ 2ee
1.5
"
¸ 65.0292
œ 1 1(.2) œ 1.2, œ 1.2 (1.2)(.2) œ 1.44, œ 1.44 (1.44)(.2) œ 1.728, œ 1.728 (1.728)(.2) œ 2.0736, œ 2.0736 (2.0736)(.2) œ 2.48832; œ dx Ê ln y œ x C" Ê y œ Cex ; y(0) œ 1 Ê 1 œ Ce! Ê C œ 1 Ê y œ ex Ê y(1) œ e ¸ 2.7183
18. y" œ 2 ˆ 21 ‰ (.2) œ 2.4, ‰ y# œ 2.4 ˆ 2.4 1.2 (.2) œ 2.8, ‰ y$ œ 2.8 ˆ 2.8 1.4 (.2) œ 3.2, 3.2 y% œ 3.2 ˆ 1.6 ‰ (.2) œ 3.6, ‰ y& œ 3.6 ˆ 3.6 1.8 (.2) œ 4; dy y
œ
dx x
Ê ln y œ ln x C Ê y œ kx; y(1) œ 2 Ê 2 œ k Ê y œ 2x Ê y(2) œ 4 #
19. y" œ 1 ’ (È1) “ (.5) œ .5, 1 #
.5) y# œ .5 ’ (È “ (.5) œ .39794, 1.5 #
y$ œ .39794 ’ (.39794) “ (.5) œ .34195, È2 #
y% œ .34195 ’ (.34195) È2.5 “ (.5) œ .30497, y& œ .27812, y' œ .25745, y( œ .24088, y) œ .2272; dy " dx È y# œ Èx Ê y œ 2 x C; y(1) œ 1 Ê 1 œ 2 C Ê C œ 1 Ê y œ
" 1 #È x
Ê y(5) œ
" 1 #È 5
20. y" œ 1 a0 † sin 1b ˆ "3 ‰ œ 1, y# œ 1 ˆ "3 † sin 1‰ ˆ 3" ‰ œ 1.09350, y$ œ 1.09350 ˆ 23 † sin 1.09350‰ ˆ 3" ‰ œ 1.29089, y% œ 1.29089 ˆ 33 † sin 1.29089‰ ˆ 3" ‰ œ 1.61125, y& œ 1.61125 ˆ 43 † sin 1.61125‰ ˆ 3" ‰ œ 2.05533,
y' œ 2.05533 ˆ 53 † sin 2.05533‰ ˆ 3" ‰ œ 2.54694; y w œ x sin y Ê csc y dy œ x dx Ê lnlcsc y cot yl œ 12 x2 C Ê csc y cot y œ e 2 x C œ Ce 2 x 1 2
Ê
1 cos y sin y
1 2
2 2 2 œ Ce 2 x Ê cotˆ 2y ‰ œ Ce 2 x ; ya0b œ 1 Ê cotˆ 21 ‰ œ Ce0 œ C Ê cotˆ 2y ‰ œ cotˆ 21 ‰e 2 x 1
1
2 Ê y œ 2 cot1 Šcotˆ 12 ‰e 2 x ‹, ya2b œ 2 cot1 ˆcotˆ 12 ‰e2 ‰ œ 2.65591 1
Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.
1
¸ .2880
540
Chapter 9 First-Order Differential Equations
21. y œ 1 x a1 x0 y0 bex x0 Ê yax0 b œ 1 x0 a1 x0 y0 bex0 x0 œ 1 x0 a1 x0 y0 ba1b œ y0 dy dx
œ 1 a1 x0 y0 bex x0 Ê y œ 1 x a1 x0 y0 bex x0 œ
dy dx
xÊ
dy dx
œ xy
22. y w œ faxb, yax0 b œ y0 Ê y œ 'x fatbdt C, yax0 b œ 'x fatbdt C œ C Ê C œ y0 Ê y œ 'x fatbdt y0 x
x0
x
0
0
0
23-34. Example CAS commands: Maple: ode := diff( y(x), x ) = y(x); icA := [0, 1]; icB := [0, 2]; icC := [0,-1]; DEplot( ode, y(x), x=0..2, [icA,icB,icC], arrows=slim, linecolor=blue, title="#23 (Section 9.1)" ); Mathematica: To plot vector fields, you must begin by loading a graphics package. x*y+y*z; g1 := (x,y,z) -> x^2+y^2-2; g2 := (x,y,z) -> x^2+z^2-2; h := unapply( f(x,y,z)-lambda[1]*g1(x,y,z)-lambda[2]*g2(x,y,z), (x,y,z,lambda[1],lambda[2]) ); hx := diff( h(x,y,z,lambda[1],lambda[2]), x ); hy := diff( h(x,y,z,lambda[1],lambda[2]), y ); hz := diff( h(x,y,z,lambda[1],lambda[2]), z ); hl1 := diff( h(x,y,z,lambda[1],lambda[2]), lambda[1] ); hl2 := diff( h(x,y,z,lambda[1],lambda[2]), lambda[2] ); sys := { hx=0, hy=0, hz=0, hl1=0, hl2=0 }; q1 := solve( sys, {x,y,z,lambda[1],lambda[2]} ); q2 := map(allvalues,{q1}); for p in q2 do eval( [x,y,z,f(x,y,z)], p ); ``=evalf(eval( [x,y,z,f(x,y,z)], p )); end do;
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
# (a) #(b)
# (c) # (d)
is
œ1
Section 14.9 Taylor's Formula for Two Variables Mathematica: (assigned functions will vary) Clear[x, y, z, lambda1, lambda2] f[x_,y_,z_]:= x y y z g1[x_,y_,z_]:= x2 y2 2 g2[x_,y_,z_]:= x2 z2 2 h = f[x, y, z] lambda1 g1[x, y, z] lambda2 g2[x, y, z]; hx= D[h, x]; hy= D[h, y]; hz= D[h,z]; hL1=D[h, lambda1]; hL2= D[h, lambda2]; critical=Solve[{hx==0, hy==0, hz==0, hL1==0, hL2==0, g1[x,y,z]==0, g2[x,y,z]==0}, {x, y, z, lambda1, lambda2}]//N {{x, y, z}, f[x, y, z]}/.critical 14.9 TAYLOR'S FORMULA FOR TWO VARIABLES 1. f(xß y) œ xey Ê fx œ ey , fy œ xey , fxx œ 0, fxy œ ey , fyy œ xey Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 0 x † 1 y † 0 "# ax# † 0 2xy † 1 y# † 0b œ x xy quadratic approximation;
fxxx œ 0, fxxy œ 0, fxyy œ ey , fyyy œ xey Ê f(xß y) ¸ quadratic "6 cx$ fxxx (!ß !) 3x# yfxxy (0ß 0) 3xy# fxyy (!ß !) y$ fyyy (0ß 0)d
œ x xy "6 ax$ † 0 3x# y † 0 3xy# † 1 y$ † 0b œ x xy "# xy# , cubic approximation
2. f(xß y) œ ex cos y Ê fx œ ex cos y, fy œ ex sin y, fxx œ ex cos y, fxy œ ex sin y, fyy œ ex cos y Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (!ß 0) "# cx# fxx (!ß !) 2xyfxy (!ß !) y# fyy (0ß 0)d
œ 1 x † 1 y † 0 "# cx# † 1 2xy † 0 y# † (1)d œ 1 x "# ax# y# b , quadratic approximation;
fxxx œ ex cos y, fxxy œ ex sin y, fxyy œ ex cos y, fyyy œ ex sin y Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ 1 x "# ax# y# b 6" cx$ † 1 3x# y † 0 3xy# † (1) y$ † 0d œ 1 x "# ax# y# b 6" ax$ 3xy# b , cubic approximation
3. f(xß y) œ y sin x Ê fx œ y cos x, fy œ sin x, fxx œ y sin x, fxy œ cos x, fyy œ 0 Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (!ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 0 x † 0 y † 0 "# ax# † 0 2xy † 1 y# † 0b œ xy, quadratic approximation;
fxxx œ y cos x, fxxy œ sin x, fxyy œ 0, fyyy œ 0 Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ xy "6 ax$ † 0 3x# y † 0 3xy# † 0 y$ † 0b œ xy, cubic approximation
4. f(xß y) œ sin x cos y Ê fx œ cos x cos y, fy œ sin x sin y, fxx œ sin x cos y, fxy œ cos x sin y, fyy œ sin x cos y Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 0 x † 1 y † 0 "# ax# † 0 2xy † 0 y# † 0b œ x, quadratic approximation;
fxxx œ cos x cos y, fxxy œ sin x sin y, fxyy œ cos x cos y, fyyy œ sin x sin y Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d
œ x "6 cx$ † (1) 3x# y † 0 3xy# † (1) y$ † 0d œ x 6" ax$ 3xy# b, cubic approximation
5. f(xß y) œ ex ln (1 y) Ê fx œ ex ln (1 y), fy œ
ex 1y
, fxx œ ex ln (1 y), fxy œ
ex 1y
Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d
œ 0 x † 0 y † 1 "# cx# † 0 2xy † 1 y# † (1)d œ y "# a2xy y# b , quadratic approximation; fxxx œ ex ln (1 y), fxxy œ
ex 1y
x
, fxyy œ (1 e y)# , fyyy œ
x
, fyy œ (1 e y)#
2ex (1 y)$
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
857
858
Chapter 14 Partial Derivatives Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d
œ y "2 a2xy y# b 6" cx$ † 0 3x# y † 1 3xy# † (1) y$ † 2d
œ y "# a2xy y# b 6" a3x# y 3xy# 2y$ b , cubic approximation 4 2 (2x y 1)# , fxy œ (2x y 1)# , " # # fyy œ (2x " y 1)# Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) # cx fxx (0ß 0) 2xyfxy (0ß 0) y fyy (0ß 0)d œ 0 x † 2 y † 1 "# cx# † (4) 2xy † (2) y# † (1)d œ 2x y "# a4x# 4xy y# b œ (2x y) "# (2x y)# , quadratic approximation; fxxx œ (2x 16y 1)$ , fxxy œ (2x 8y 1)$ , fxyy œ (2x 4y 1)$ , fyyy œ (2x 2y 1)$ Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ (2x y) "# (2x y)# 6" ax$ † 16 3x# y † 8 3xy# † 4 y$ † 2b œ (2x y) "# (2x y)# 3" a8x$ 12x# y 6xy# y# b œ (2x y) "# (2x y)# 3" (2x y)$ , cubic approximation
6. f(xß y) œ ln (2x y 1) Ê fx œ
2 2x y 1
, fy œ
" #x y 1
, fxx œ
7. f(xß y) œ sin ax# y# b Ê fx œ 2x cos ax# y# b , fy œ 2y cos ax# y# b , fxx œ 2 cos ax# y# b 4x# sin ax# y# b , fxy œ 4xy sin ax# y# b , fyy œ 2 cos ax# y# b 4y# sin ax# y# b Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 0 x † 0 y † 0 "# ax# † 2 2xy † 0 y# † 2b œ x# y# , quadratic approximation;
fxxx œ 12x sin ax# y# b 8x$ cos ax# y# b , fxxy œ 4y sin ax# y# b 8x# y cos ax# y# b , fxyy œ 4x sin ax# y# b 8xy# cos ax# y# b , fyyy œ 12y sin ax# y# b 8y$ cos ax# y# b Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ x# y# "6 ax$ † 0 3x# y † 0 3xy# † 0 y$ † 0b œ x# y# , cubic approximation
8. f(xß y) œ cos ax# y# b Ê fx œ 2x sin ax# y# b , fy œ 2y sin ax# y# b , fxx œ 2 sin ax# y# b 4x# cos ax# y# b , fxy œ 4xy cos ax# y# b , fyy œ 2 sin ax# y# b 4y# cos ax# y# b Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 1 x † 0 y † 0 "# cx# † 0 2xy † 0 y# † 0d œ 1, quadratic approximation;
fxxx œ 12x cos ax# y# b 8x$ sin ax# y# b , fxxy œ 4y cos ax# y# b 8x# y sin ax# y# b , fxyy œ 4x cos ax# y# b 8xy# sin ax# y# b , fyyy œ 12y cos ax# y# b 8y$ sin ax# y# b Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ 1 "6 ax$ † 0 3x# y † 0 3xy# † 0 y$ † 0b œ 1, cubic approximation
9. f(xß y) œ
" 1xy
Ê fx œ
" (1 x y)#
œ fy , fxx œ
Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0)
2 (1 x y)$ " # # cx fxx (0ß 0)
œ fxy œ fyy 2xyfxy (0ß 0) y# fyy (0ß 0)d
œ 1 x † 1 y † 1 "# ax# † 2 2xy † 2 y# † 2b œ 1 (x y) ax# 2xy y# b
œ 1 (x y) (x y)# , quadratic approximation; fxxx œ Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0)
6 œ fxxy œ fxyy œ fyyy (1 x y)% # 3xy fxyy (0ß 0) y$ fyyy (0ß 0)d $
œ 1 (x y) (x y)# "6 ax$ † 6 3x# y † 6 3xy# † 6 y † 6b
œ 1 (x y) (x y)# ax$ 3x# y 3xy# y$ b œ 1 (x y) (x y)# (x y)$ , cubic approximation 10. f(xß y) œ fxy œ
" 1 x y xy
1 (" x y xy)#
Ê fx œ
, fyy œ
1y (1 x y xy)#
, fy œ
1x (" x y xy)#
, fxx œ
2(1 y)# (1 x y xy)$
,
2(" x)# (1 x y xy)$
Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d
œ 1 x † 1 y † 1 "# ax# † 2 2xy † 1 y# † 2b œ 1 x y x# xy y# , quadratic approximation;
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 14.10 Partial Derivatives with Constrained Variables fxxx œ
6(1 y)$ (1 x y xy)%
, fxxy œ
[4(1 x y xy) 6(1 y)(1 x)](1 y) (1 x y xy)%
,
$
[4(1 x y xy) 6(1 x)(1 y)](1 x) x) , fyyy œ (1 6(1 (1 x y xy)% x y xy)% Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) œ 1 x y x# xy y# "6 ax$ † 6 3x# y † 2 3xy# † 2 y$ † 6b # # $ # # $
fxyy œ
y$ fyyy (0ß 0)d
œ 1 x y x xy y x x y xy y , cubic approximation 11. f(xß y) œ cos x cos y Ê fx œ sin x cos y, fy œ cos x sin y, fxx œ cos x cos y, fxy œ sin x sin y, fyy œ cos x cos y Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 1 x † 0 y † 0 "# cx# † (1) 2xy † 0 y# † (1)d œ 1
x# #
y# #
, quadratic approximation. Since all partial
derivatives of f are products of sines and cosines, the absolute value of these derivatives is less than or equal to 1 Ê E(xß y) Ÿ "6 c(0.1)$ 3(0.1)$ 3(0.1)$ 0.1)$ d Ÿ 0.00134. 12. f(xß y) œ ex sin y Ê fx œ ex sin y, fy œ ex cos y, fxx œ ex sin y, fxy œ ex cos y, fyy œ ex sin y Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d
œ 0 x † 0 y † 1 "# ax# † 0 2xy † 1 y# † 0b œ y xy , quadratic approximation. Now, fxxx œ ex sin y,
fxxy œ ex cos y, fxyy œ ex sin y, and fyyy œ ex cos y. Since kxk Ÿ 0.1, kex sin yk Ÿ ke0Þ1 sin 0.1k ¸ 0.11 and kex cos yk Ÿ ke0Þ1 cos 0.1k ¸ 1.11. Therefore, E(xß y) Ÿ "6 c(0.11)(0.1)$ 3(1.11)(0.1)$ 3(0.11)(0.1)$ (1.11)(0.1)$ d Ÿ 0.000814. 14.10 PARTIAL DERIVATIVES WITH CONSTRAINED VARIABLES 1. w œ x# y# z# and z œ x# y# : Î x œ x(yß z) Ñ y yœy Ä w Ê Š ``wy ‹ œ (a) Œ Ä z z Ï zœz Ò œ 2x `` xy 2y Ê 0 œ 2x `` xy 2y Ê
`x `y
œ
" #y
`x `z
œ
1 2x
`w `x `x `z
`w `x `x `z
œ 2x `` yx 2y `` yy
`w `y `y `z
`w `z `x `z `z ; `z
œ 0 and
`z `z
œ 2x `` xz 2y `` yz
`w `y `y `z
`w `z `y `z `z ; `z
œ 0 and
`z `z
œ 2x `` xz 2y `` yz
Ê ˆ ``wz ‰y œ (2x) ˆ #"x ‰ (2y)(0) (2z)(1) œ 1 2z
2. w œ x# y z sin t and x y œ t: Î xœx Ñ ÎxÑ Ð yœy Ó y Ä Ð Ä w Ê Š ``wy ‹ œ (a) Ó zœz xz ÏzÒ Ït œ x yÒ ß
`t `y
`z `y
œ 0 and
" Ê ˆ ``wz ‰x œ (2x)(0) (2y) Š 2y ‹ (2z)(1) œ 1 2z
Î x œ x(yß z) Ñ y yœy Ä w Ê ˆ ``wz ‰y œ (c) Œ Ä z Ï zœz Ò Ê 1 œ 2x `` xz Ê
`w `z `z `z `y ; `y
z
xœx Ñ x y œ y(xß z) Ä w Ê ˆ ``wz ‰x œ (b) Œ Ä z Ï zœz Ò `y `z
`w `y `y `y
œ xy Ê Š ``wy ‹ œ (2x) ˆ xy ‰ (2y)(1) (2z)(0) œ 2y 2y œ 0
Î
Ê 1 œ 2y `` yz Ê
`w `x `x `y
`w `x `x `y
`w `y `y `y
`w `z `z `y
`w `t `x `t `y ; `y
œ 0,
`z `y
œ 0, and
œ 1 Ê Š ``wy ‹ œ (2x)(0) (1)(1) (1)(0) (cos t)(1) œ 1 cos t œ 1 cos (x y) xßt
Îx œ t yÑ ÎyÑ Ð yœy Ó z Ä Ð Ä w Ê Š ``wy ‹ œ (b) Ó z z œ zt ÏtÒ Ï tœt Ò ß
Ê
`x `y
œ
`t `y
`y `y
`w `x `x `y
`w `y `y `y
`w `z `z `y
`w `t `z `t `y ; `y
œ 0 and
`t `y
œ0
œ 1 Ê Š ``wy ‹ œ (2x)(1) (1)(1) (1)(0) (cos t)(0) œ 1 2at yb œ 1 2y 2t zßt
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
859
860
Chapter 14 Partial Derivatives
Î xœx Ñ ÎxÑ Ð yœy Ó y Ä Ð Ä w Ê ˆ ``wz ‰x y œ (c) Ó œ z z ÏzÒ Ït œ x yÒ ß
`w `x `x `z
`w `y `y `z
`w `z `z `z
`w `t `x `t `z ; `z
œ 0 and
`y `z
œ0
`w `z `z `z
`w `t `y `t `z ; `z
œ 0 and
`t `z
œ0
`w `z `z `t
`w `t `x `t `t ; `t
œ 0 and
`z `t
œ0
`w `z `z `t
`w `t `y `t `t ; `t
œ 0 and
`z `t
œ0
Ê ˆ ``wz ‰x y œ (2x)(0) (1)(0) (1)(1) (cos t)(0) œ 1 ß
Îx œ t yÑ ÎyÑ Ð yœy Ó z Ä Ð Ä w Ê ˆ ``wz ‰y t œ (d) Ó zœz ÏtÒ Ï tœt Ò ß
`w `x `x `z
`w `y `y `z
Ê ˆ ``wz ‰y t œ (2x)(0) (1)(0) (1)(1) (cos t)(0) œ 1 ß
Î xœx Ñ ÎxÑ Ð y œ t xÓ z Ä Ð Ä w Ê ˆ ``wt ‰x z œ (e) Ó zœz ÏtÒ Ï tœt Ò ß
`w `x `x `t
`w `y `y `t
Ê ˆ ``wt ‰x z œ (2x)(0) (1)(1) (1)(0) (cos t)(1) œ 1 cos t ß
Îx œ t yÑ ÎyÑ Ð yœy Ó z Ä Ð Ä w Ê ˆ ``wt ‰y z œ (f) Ó zœz ÏtÒ Ï tœt Ò ß
`w `x `x `t
`w `y `y `t
Ê ˆ ``wt ‰y z œ (2x)(1) (1)(0) (1)(0) (cos t)(1) œ cos t 2x œ cos t 2(t y) ß
3. U œ f(Pß Vß T) and PV œ nRT Î PœP Ñ P VœV Ä U Ê ˆ ``UP ‰V œ (a) Œ Ä V PV ÏT œ Ò
`U `P `P `P
`U `V `V `P
`U `T `T `P
œ
`U `P
V ‰ ‰ ˆ ` U ‰ ˆ nR ˆ `` U V (0) ` T
nR
œ
`U `P
V ‰ ˆ ``UT ‰ ˆ nR
nRT ÎP œ V Ñ V Ä U Ê ˆ ``UT ‰V œ (b) Œ Ä VœV T Ï TœT Ò ‰ `U œ ˆ ``UP ‰ ˆ nR V `T
`U `P `P `T
4. w œ x# y# z# and y sin z z sin x œ 0 Î xœx Ñ x yœy Ä w Ê ˆ ``wx ‰y œ (a) Œ Ä y Ï z œ z(xß y) Ò (y cos z) Ê
`z `x
(sin x)
ˆ ``wx ‰ yk (0ß1ß1)
`z `x
z cos x œ 0 Ê
`z `x
`x `z
`w `x `x `x
œ
`U `V `V `T
`w `y `y `x
z cos x y cos z sin x . #
`U `T `T `T
‰ ˆ `U ‰ œ ˆ ``UP ‰ ˆ nR V ` V (0)
`w `z `y `z `x ; `x
œ 0 and œ
1 1
œ1
œ (2x)
`x `z
(2y)(0) (2z)(1)
At (0ß 1ß 1),
`z `x
`U `T
œ (2x)(1) (2y)(0) (2z)(1)k Ð0ß1ß1Ñ œ 21
Î x œ x(yß z) Ñ y yœy Ä w Ê ˆ ``wz ‰y œ (b) Œ Ä z Ï zœz Ò œ (2x)
`y `z y x) `` xz œ
2z. Now (sin z)
Ê y cos z sin x (z cos
`w `x `x `z
`w `y `y `z
cos z sin x (z cos x) 0 Ê
`x `z
œ
y cos z sin x . z cos x
`w `z `z `z
`x `z
`y `z œ 0 (!ß "ß 1), `` xz œ (11)(1)0
œ 0 and
At
œ
" 1
Ê ˆ ``wz ‰Ck (!,"ß1Ñ œ 2(0) ˆ 1" ‰ 21 œ 21 5. w œ x# y# yz z$ and x# y# z# œ 6 Î xœx Ñ x yœy (a) Œ Ä Ä w Ê Š ``wy ‹ œ y x Ï z œ z(xß y) Ò
`w `x `x `y
`w `y `y `y
`w `z `z `y
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 14.10 Partial Derivatives with Constrained Variables œ a2xy# b (0) a2x# y zb (1) ay 3z# b `x `y
`z `y
œ 0 Ê 2y (2z)
`z `y
œ0 Ê
`z `y
`z `y
`x `y
`w `x `x `y
`x `y
a2x# y zb (1) ay 3z# b (0) œ a2x# yb
œ 0 Ê (2x)
`x `y
`x `y
2y œ 0 Ê
`w `y `y `y
`x `y
Now (2x) `z `y
œ yz . At (wß xß yß z) œ (4ß 2ß 1ß 1),
œ c(2)(2)# (1) (1)d c1 3(1)# d (1) œ 5 Î x œ x(yß z) Ñ y yœy (b) Œ Ä Ä w Ê Š ``wy ‹ œ z z Ï zœz Ò œ a2xy# b
`z `y .
œ 2x# y z ay 3z# b
2y (2z)
`z `y
œ 0 and
œ "1 œ 1 Ê Š ``wy ‹ ¹
x (4ß2ß1ßc1)
`w `z `z `y
2x# y z. Now (2x)
œ yx . At (wß xß yß z) œ (4ß 2ß 1ß 1),
`x `y
`x `y
2y (2z)
œ "2 Ê Š ``wy ‹ ¹ z
œ (2)(2)(1) ˆ "# ‰ (2)(2)# (1) (1) œ 5
`z `y
œ 0 and
(4ß2ß1ßc1)
#
6. y œ uv Ê 1 œ v œv
`u `y
u Š uv
`u `y
u
`u `y ‹
`v `y ;
œ Šv
#
x œ u# v# and u v
#
‹
`u `y
Ê
`u `y
`x `y
œ
œ 0 Ê 0 œ 2u
`u `y
2v
`v `y
At (uß v) œ ŠÈ2ß 1‹ ,
v v# u# .
`v `y
Ê `u `y
œ ˆ uv ‰ "
œ
#
1# ŠÈ2‹
`u `y
Ê 1
œ 1
Ê Š `` uy ‹ œ 1 x
r x œ r cos ) 7. Œ Ä Œ Ê ˆ ``xr ‰) œ cos ); x# y# œ r# Ê 2x 2y ) y œ r sin ) Ê ``xr œ xr Ê ˆ ``xr ‰ œ È #x #
`y `x
œ 2r
`r `x
and
`y `x
8. If x, y, and z are independent, then ˆ ``wx ‰y z œ ß
`w `x `x `x
`w `y `y `x
`w `z `z `x
`w `t `t `x
œ (2x)(1) (2y)(0) (4)(0) (1) ˆ ``xt ‰ œ 2x ``xt . Thus x 2z t œ 25 Ê 1 0 Ê ˆ ``wx ‰ œ 2x 1. On the other hand, if x, y, and t are independent, then ˆ ``wx ‰ yßz
œ
Ê 1
`r `x
x y
y
`w `x `x `x
œ 0 Ê 2x œ 2r
`t `x
œ0 Ê
`t `x
œ 1
yßt
``wy `` yx ``wz `` xz ``wt ``xt œ (2x)(1) (2y)(0) 4 `` xz (1)(0) œ 2 `` xz 0 œ 0 Ê `` xz œ #" Ê ˆ ``wx ‰yßt œ 2x 4 ˆ #" ‰ œ 2x 2.
9. If x is a differentiable function of y and z, then f(xß yß z) œ 0 Ê
`f `x `x `x
2x 4
`f `y `y `x
`z `x .
`f `z `z `x
Thus, x 2z t œ 25
œ0 Ê
`f `x
`f `y `y `x
œ0
Ê Š `` xy ‹ œ `` f/f/`` yz . Similarly, if y is a differentiable function of x and z, Š `` yz ‹ œ `` f/f/`` xz and if z is a z
x
differentiable function of x and y, ˆ `` xz ‰y œ `` f/f/`` xy . Then Š `` xy ‹ Š `` yz ‹ ˆ `` xz ‰y z
œ Š
` f/` y ˆ ` f/` z ‰ ` f/` x ` f/` z ‹ ` f/` x Š ` f/` y ‹
10. z œ z f(u) and u œ xy Ê œ x ˆ1 y
df ‰ du
y ˆx
df ‰ du
`z `x
x
œ 1.
œ1
df ` u du ` x
œ1y
df du ;
also
`z `y
œ0
df ` u du ` y
œx
df du
so that x
`z `x
y
œ 0 and
`x `y
œ0 Ê
`g `y
`z `y
œx
11. If x and y are independent, then g(xß yß z) œ 0 Ê
`g `x `x `y
`g `y `y `y
`g `z `z `y
`y Ê Š `` yz ‹ œ `` g/ g/` z , as claimed. x
12. Let x and y be independent. Then f(xß yß zß w) œ 0, g(xß yß zß w) œ 0 and Ê `` xf `` xx `` yf `` yx `` zf `` xz ``wf ``wx œ `` xf `` zf `` xz ``wf ``wx `g `x `g `y `g `z `g `w `g `g `z `g `w `x `x `y `x `z `x `w `x œ `x `z `x `w `x œ 0
`y `x
œ0
œ 0 and imply
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
`g `z `z `y
œ0
861
862
Chapter 14 Partial Derivatives
`f `z `g `z
`z `x `z `x
`f `w `g `w
`w `x `w `x
œ œ
`f `x `g `x
Ê ˆ `` xz ‰y œ
c ``xf » c `g »
`x `f `z `g `z
`f `w `g » `w `f `w `g » `w
œ
`x `y œ 0 `g `g `z `y `z `y
Likewise, f(xß yß zß w) œ 0, g(xß yß zß w) œ 0 and œ
`f `y `f `z `g `z
`z `y `z `y
`f `z `z `y
`f `w `g `w
`w `y `w `y
`f `w `w `y
œ 0 and (similarly)
œ `` yf œ
`g `y
Ê Š ``wy ‹ œ x
`g `g `f `w `x `w `g `f `f `g `z `w `z `w
``xf
`f `z » `g `z `f `z » `g `z
c ``yf c `` gy » `f `w `g » `w
œ
œ
`f `x `f `z
`g `w `g `w
`g `x `f `g `w `z
``wf
`f `x `f `y `f `z `x `y `y `y `z `y `g `w ` w ` y œ 0 imply
Ê
`g `g `f `y `z `y `g `f `f `g `z `w `z `w
`` fz
œ
`f `z `f `z
`g `y `g `w
`g `z `f `g `w `z
``yf
, as claimed.
`f `w `w `y
, as claimed.
CHAPTER 14 PRACTICE EXERCISES 1. Domain: All points in the xy-plane Range: z 0 Level curves are ellipses with major axis along the y-axis and minor axis along the x-axis.
2. Domain: All points in the xy-plane Range: 0 z _ Level curves are the straight lines x y œ ln z with slope 1, and z 0.
3. Domain: All (xß y) such that x Á 0 and y Á 0 Range: z Á 0 Level curves are hyperbolas with the x- and y-axes as asymptotes.
4. Domain: All (xß y) so that x# y 0 Range: z 0 Level curves are the parabolas y œ x# c, c 0.
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Chapter 14 Practice Exercises 5. Domain: All points (xß yß z) in space Range: All real numbers Level surfaces are paraboloids of revolution with the z-axis as axis.
6. Domain: All points (xß yß z) in space Range: Nonnegative real numbers Level surfaces are ellipsoids with center (0ß 0ß 0).
7. Domain: All (xß yß z) such that (xß yß z) Á (0ß !ß 0) Range: Positive real numbers Level surfaces are spheres with center (0ß 0ß 0) and radius r 0.
8. Domain: All points (xß yß z) in space Range: (0ß 1] Level surfaces are spheres with center (0ß 0ß 0) and radius r 0.
9.
lim
Ðxß yÑ Ä Ð1ß ln 2Ñ
ey cos x œ eln 2 cos 1 œ (2)(1) œ 2 2y
10.
lim Ðxß yÑ Ä Ð0ß 0Ñ x cos y
11.
lim # # Ðxß yÑ Ä Ð1ß 1Ñ x y xÁ „y
12.
13.
14.
xy
x$ y$ 1 Ðxß yÑ Ä Ð1ß 1Ñ xy 1
lim
lim
P Ä Ð1ß 1ß eÑ
lim
œ
œ
20 0 cos 0
œ2 xy
lim Ðxß yÑ Ä Ð1ß 1Ñ (x y)(x y) xÁ „y
œ
œ
(xy 1) ax# y# xy 1b xy 1 Ðx ß y Ñ Ä Ð 1 ß 1Ñ
lim
1
lim Ðxß yÑ Ä Ð1ß 1Ñ x y
œ
lim
œ
Ðxß yÑ Ä Ð1ß 1Ñ
" 11
œ
" #
ax# y# xy 1b œ 1# † 1# 1 † 1 1 œ 3
ln kx y zk œ ln k1 (1) ek œ ln e œ 1
P Ä Ð1 ß 1 ß 1 Ñ
tan" (x y z) œ tan" (1 (1) (1)) œ tan" (1) œ 14
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
863
864
Chapter 14 Partial Derivatives
15. Let y œ kx# , k Á 1. Then
kx#
œ
y
lim # Ðxß yÑ Ä Ð0ß 0Ñ x y y Á x#
lim # # axß kx# b Ä Ð0ß 0Ñ x kx
œ
k 1 k#
which gives different limits for
œ
1 k# k
which gives different limits for
different values of k Ê the limit does not exist. 16. Let y œ kx, k Á 0. Then
x# y# xy Ðxß yÑ Ä Ð0ß 0Ñ
lim
x# (kx)# x(kx) (xß kxÑ Ä Ð0ß 0Ñ
œ
lim
xy Á 0
different values of k Ê the limit does not exist. 17. Let y œ kx. Then
x# y#
œ
lim # # Ðxß yÑ Ä Ð0ß 0Ñ x y
x# k# x# x # k# x#
1 k# 1 k#
œ
which gives different limits for different values
of k Ê the limit does not exist so f(0ß 0) cannot be defined in a way that makes f continuous at the origin. 18. Along the x-axis, y œ 0 and
sin (x y) kxkkyk
lim
Ðxß yÑ Ä Ð0ß 0Ñ
œ lim
sin x k xk
xÄ0
œœ
1, x 0 , so the limit fails to exist ", x 0
Ê f is not continuous at (0ß 0). 19.
`g `r
œ cos ) sin ),
20.
`f `x
œ
21.
`f ` R"
" #
Š x# 2x y# ‹
œ R"# , "
`f ` R#
`g `)
œ r sin ) r cos )
y ‹ x# y # 1 ˆx‰
Š
œ
œ R"# ,
x#
`f ` R$
#
x y#
x#
y y#
œ
xy x# y#
`f `y
,
œ
" #
Š x# 2y y# ‹
Š 1x ‹ y #
1 ˆx‰
œ
y x# y#
x x# y#
œ
xy x# y#
œ R"# $
22. hx (xß yß z) œ 21 cos (21x y 3z), hy (xß yß z) œ cos (21x y 3z), hz (xß yß z) œ 3 cos (21x y 3z) 23.
`P `n
œ
RT V
,
`P `R
œ
nT V
`P `T
,
œ
nR V
,
`P `V
œ nRT V#
24. fr (rß jß Tß w) œ 2r"# j É 1Tw , fj (rß jß Tß w) œ #r"j# É
25.
œ
" 4rj
É T1"w œ
`g `x
œ
" y
,
`g `y
" 4rjT
œ1
, fT (rß jß Tß w) œ ˆ #"rj ‰ Š È"1w ‹ Š 2È" T ‹
T 1w
É 1Tw , fw (rß jß Tß w) œ ˆ #"rj ‰ É T1 ˆ "# w$Î# ‰ œ 4r"jw É 1Tw Ê
x y#
` #g ` x#
œ 0,
` #g ` y#
œ
2x y$
,
` #g ` y` x
œ
` #g ` x` y
œ y"#
26. gx (xß y) œ ex y cos x, gy (xß y) œ sin x Ê gxx (xß y) œ ex y sin x, gyy (xß y) œ 0, gxy (xß y) œ gyx (xß y) œ cos x 27.
`f `x
œ 1 y 15x#
2x x# 1
,
`f `y
œx Ê
` #f ` x#
œ 30x
22x# ax# 1b#
,
` #f ` y#
œ 0,
` #f ` y` x
œ
` #f ` x` y
œ1
28. fx (xß y) œ 3y, fy (xß y) œ 2y 3x sin y 7ey Ê fxx (xß y) œ 0, fyy (xß y) œ 2 cos y 7ey , fxy (xß y) œ fyx (xß y) œ 3 29.
`w `x
Ê Ê 30.
`w `x
Ê Ê
œ y cos (xy 1),
`w `y
œ x cos (xy 1),
dx dt
œ et ,
dy dt
dw t ˆ " ‰ dt œ [y cos (xy 1)]e [x cos (xy 1)] t1 ; dw ¸ ˆ " ‰ dt tœ0 œ 0 † 1 [1 † (1)] 01 œ 1
œ ey ,
`w `y
œ xey sin z,
dw y "Î# axey dt œ e t dw ¸ dt tœ1 œ 1 † 1 (2 † 1
`w `z
œ y cos z sin z,
sin zb ˆ1
"‰ t
dx dt
œ
" t1
t œ 0 Ê x œ 1 and y œ 0
œ t"Î# ,
dy dt
œ 1 "t ,
dz dt
œ1
(y cos z sin z)1; t œ 1 Ê x œ 2, y œ 0, and z œ 1
0)(2) (0 0)1 œ 5
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Chapter 14 Practice Exercises 31.
`w `x
Ê Ê
33.
`w `u `w `v
œ
`x `u `x `v
œ
ˆ 1 x x#
`f `x
œ y z,
`f `y
œ x z,
œ
Ê
`w `x
dw dx dw dx
œ ˆ 1 x x#
`x `r
`x `s
œ 1,
œ cos s,
" ‰ u x# 1 a2e cos vb ; u œ v œ 0 Ê " ‰ `w ¸ u x# 1 a2e sin vb Ê ` v Ð0ß0Ñ œ `f `z
œ y x,
dx dt
df dt œ (y z)(sin t) (x z)(cos df ¸ dt tœ1 œ (sin 1 cos 2)(sin 1)
Ê 34.
œ cos (2x y),
`y `r
`y `s
œ s,
œr
`w ` r œ [2 cos (2x y)](1) [ cos (2x y)](s); r œ 1 and s œ 0 Ê x œ 1 and y œ 0 `w ¸ `w ` r Ð1ß0Ñ œ (2 cos 21) (cos 21 )(0) œ 2; ` s œ [2 cos (2x y)](cos s) [ cos (2x y)](r) `w ¸ ` s Ð1ß0Ñ œ (2 cos 21)(cos 0) (cos 21)(1) œ 2 1
Ê
32.
`w `y
œ 2 cos (2x y),
œ
dw ` s ds ` x
œ (5)
dw ds
and
`w `y
œ
dw ` s ds ` y
œ sin t,
dy dt
`w ¸ ` u Ð0ß0Ñ
xœ2 Ê ˆ 52
œ cos t,
dz dt
"‰ 5 (0)
œ ˆ 52 5" ‰ (2) œ
1 y cos xy 2y x cos xy
œ 2 sin 2t
(cos 1 cos 2)(cos 1) 2(sin 1 cos 1)(sin 2)
œ (1)
dw ds
œ
`w `x
Ê
dw ds
5
`w `y
œ5
œ
dy dx ¹ Ð0ß1Ñ
1" 2
dw ds
5
dw ds
dy dx ¹ Ð0ßln 2Ñ
1 y cos xy œ FFxy œ 2y x cos xy
dy dx
xby
e œ FFxy œ 2y 2x exby
ß
1‰ 4
#
œ
i
j Ê f increases most rapidly in the direction u œ
È2 #
i
Ê f increases most rapidly in the direction u œ u œ È12 i
1 È2
i
1 È2
" È2
œ
È2 #
and decreases most
38. ™ f œ 2xec2y i 2x# ec2y j Ê ™ f k Ð1ß0Ñ œ #i #j Ê k ™ f k œ È2# (2)# œ 2È2; u œ 1 È2
#
œ "# i "# j Ê k ™ f k œ Ɉ "# ‰ ˆ "# ‰ œ
È2 # j È È È È rapidly in the direction u œ #2 i #2 j ; (Du f)P! œ k ™ f k œ #2 and (Dcu f)P! œ #2 ; 7 u" œ kvvk œ È33i #4j4# œ 53 i 54 j Ê (Du" f)P! œ ™ f † u" œ ˆ "# ‰ ˆ 35 ‰ ˆ "# ‰ ˆ 45 ‰ œ 10 ™f k™f k
È2 #
dy dx
2 œ 2 ln0 2 2 œ (ln 2 1)
37. ™ f œ ( sin x cos y)i (cos x sin y)j Ê ™ f k ˆ 14 È2 #
œ0
œ 1
36. F(xß y) œ 2xy exy 2 Ê Fx œ 2y exy and Fy œ 2x exy Ê
uœ
;
t) 2(y x)(sin 2t); t œ 1 Ê x œ cos 1, y œ sin 1, and z œ cos 2
Ê at (xß y) œ (!ß 1) we have
Ê at (xß y) œ (!ß ln 2) we have
2 5
œ0
35. F(xß y) œ 1 x y# sin xy Ê Fx œ 1 y cos xy and Fy œ 2y x cos xy Ê œ
865
™f k™f k
œ
1 È2
i
1 È2
j
j and decreases most rapidly in the direction
j ; (Du f)P! œ k ™ f k œ 2È2 and (Dcu f)P! œ 2È2 ; u" œ
v kv k
œ
ij È 1# 1#
œ
1 È2
i
1 È2
j
Ê (Du" f)P! œ ™ f † u" œ (2) Š È"2 ‹ (2) Š È"2 ‹ œ 0 2 3 6 39. ™ f œ Š 2x 3y 6z ‹ i Š 2x 3y 6z ‹ j Š 2x 3y 6z ‹ k Ê ™ f k Ð 1ß 1ß1Ñ œ 2i 3j 6k ;
uœ
™f k™f k
œ
2i 3j 6k È 2# 3# 6#
œ
2 7
i 73 j 76 k Ê f increases most rapidly in the direction u œ
2 7
i 37 j 67 k and
decreases most rapidly in the direction u œ 27 i 37 j 67 k ; (Du f)P! œ k ™ f k œ 7, (Du f)P! œ 7; u" œ
v kv k
œ
2 7
i 37 j 67 k Ê (Du" f)P! œ (Du f)P! œ 7
40. ™ f œ (2x 3y)i (3x 2)j (1 2z)k Ê ™ f k Ð0ß0ß0Ñ œ 2j k ; u œ rapidly in the direction u œ
2 È5
j
" È5
™f k™f k
œ
2 È5
j
" È5
k Ê f increases most
k and decreases most rapidly in the direction u œ È25 j
(Du f)P! œ k ™ f k œ È5 and (Du f)P! œ È5 ; u" œ
v kvk
œ
ijk È 1# 1# 1#
Ê (Du" f)P! œ ™ f † u" œ (0) Š È"3 ‹ (2) Š È"3 ‹ (1) Š È"3 ‹ œ
3 È3
œ
" È3
i
" È3
j
" È3
k
œ È3
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
" È5
k;
;
866
Chapter 14 Partial Derivatives
41. r œ (cos 3t)i (sin 3t)j 3tk Ê v(t) œ (3 sin 3t)i (3 cos 3t)j 3k Ê v ˆ 13 ‰ œ 3j 3k Ê u œ È"2 j
" È2
k ; f(xß yß z) œ xyz Ê ™ f œ yzi xzj xyk ; t œ
Ê ™ f k Ð 1ß0ß1Ñ œ 1j Ê ™ f † u œ (1j) † Š È"2 j
" È2
k‹ œ
1 3
yields the point on the helix (1ß 0ß 1)
1 È2
42. f(xß yß z) œ xyz Ê ™ f œ yzi xzj xyk ; at (1ß 1ß 1) we get ™ f œ i j k Ê the maximum value of Du f k œ k ™ f k œ È3 Ð1ß1ß1Ñ
43. (a) Let ™ f œ ai bj at (1ß 2). The direction toward (2ß 2) is determined by v" œ (2 1)i (2 2)j œ i œ u so that ™ f † u œ 2 Ê a œ 2. The direction toward (1ß 1) is determined by v# œ (1 1)i (1 2)j œ j œ u so that ™ f † u œ 2 Ê b œ 2 Ê b œ 2. Therefore ™ f œ 2i 2j ; fx a1, 2b œ fy a1, 2b œ 2. (b) The direction toward (4ß 6) is determined by v$ œ (4 1)i (6 2)j œ 3i 4j Ê u œ 35 i 45 j Ê ™f†uœ
14 5
.
44. (a) True
(b) False
(c) True
(d) True
45. ™ f œ 2xi j 2zk Ê ™ f k Ð0ß 1ß 1Ñ œ j 2k , ™ f k Ð0ß0ß0Ñ œ j , ™ f k Ð0ß 1ß1Ñ œ j 2k
46. ™ f œ 2yj 2zk Ê ™ f k Ð2ß2ß0Ñ œ 4j , ™ f k Ð2ß 2ß0Ñ œ 4j , ™ f k Ð2ß0ß2Ñ œ 4k , ™ f k Ð2ß0ß 2Ñ œ 4k
47. ™ f œ 2xi j 5k Ê ™ f k Ð2ß 1ß1Ñ œ 4i j 5k Ê Tangent Plane: 4(x 2) (y 1) 5(z 1) œ 0 Ê 4x y 5z œ 4; Normal Line: x œ 2 4t, y œ 1 t, z œ 1 5t 48. ™ f œ 2xi 2yj k Ê ™ f k Ð1ß1ß2Ñ œ 2i 2j k Ê Tangent Plane: 2(x 1) 2(y 1) (z 2) œ 0 Ê 2x 2y z 6 œ 0; Normal Line: x œ 1 2t, y œ 1 2t, z œ 2 t 49.
`z `x
œ
2x x# y#
Ê
`z ¸ ` x Ð0ß1ß0Ñ
œ 0 and
`z `y
œ
2y x# y#
Ê
`z ` y ¹ Ð0ß1ß0Ñ
œ 2; thus the tangent plane is
2(y 1) (z 0) œ 0 or 2y z 2 œ 0
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Chapter 14 Practice Exercises 50.
`z `x
œ 2x ax# y# b
#
`z ¸ ` x ˆ1ß1ß 12 ‰
Ê
œ #" and
`z `y
œ 2y ax# y# b
#
Ê
`z ` y ¹ ˆ1ß1ß 1 ‰ 2
867
œ "# ; thus the tangent
plane is "# (x 1) "# (y 1) ˆz "# ‰ œ 0 or x y 2z 3 œ 0 51. ™ f œ ( cos x)i j Ê ™ f k Ð1ß1Ñ œ i j Ê the tangent line is (x 1) (y 1) œ 0 Ê x y œ 1 1; the normal line is y 1 œ 1(x 1) Ê y œ x 1 1
52. ™ f œ xi yj Ê ™ f k Ð1ß2Ñ œ i 2j Ê the tangent line is (x 1) 2(y 2) œ 0 Ê y œ
" #
x #3 ; the normal
line is y 2 œ 2(x 1) Ê y œ 2x 4
53. Let f(xß yß z) œ x# 2y 2z 4 and g(xß yß z) œ y 1. Then ™ f œ 2xi 2j 2kk a1 1 12 b œ 2i 2j 2k â â â i j kâ â â and ™ g œ j Ê ™ f ‚ ™ g œ â 2 2 2 â œ 2i 2k Ê the line is x œ 1 2t, y œ 1, z œ "# 2t â â â0 " 0â ß ß
54. Let f(xß yß z) œ x y# z 2 and g(xß yß z) œ y 1. Then ™ f œ i 2yj kk a 12 1 12 b œ i 2j k and â â â i j kâ â â ™ g œ j Ê ™ f ‚ ™ g œ â 1 2 1 â œ i k Ê the line is x œ "# t, y œ 1, z œ "# t â â â0 " 0â ß ß
55. f ˆ 14 ß 14 ‰ œ
" #
, fx ˆ 14 ß 14 ‰ œ cos x cos yk Ð1Î4ß1Î4Ñ œ
Ê L(xß y) œ
" #
"# ˆx 14 ‰ "# ˆy 14 ‰ œ
" #
" # " #
, fy ˆ 14 ß 14 ‰ œ sin x sin yk Ð1Î4ß1Î4Ñ œ "#
x "# y; fxx (xß y) œ sin x cos y, fyy (xß y) œ sin x cos y, and
fxy (xß y) œ cos x sin y. Thus an upper bound for E depends on the bound M used for kfxx k , kfxy k , and kfyy k . With M œ
È2 #
we have kE(xß y)k Ÿ
with M œ 1, kE(xß y)k Ÿ
" #
" #
Š
È2 ˆ¸ # ‹ x
# 14 ¸ ¸y 14 ¸‰ Ÿ
# (1) ˆ¸x 14 ¸ ¸y 14 ¸‰ œ
" #
È2 4
(0.2)# Ÿ 0.0142;
(0.2)# œ 0.02.
56. f(1ß 1) œ 0, fx (1ß 1) œ yk Ð1ß1Ñ œ 1, fy (1ß 1) œ x 6yk Ð1ß1Ñ œ 5 Ê L(xß y) œ (x 1) 5(y 1) œ x 5y 4; fxx (xß y) œ 0, fyy (xß y) œ 6, and fxy (xß y) œ 1 Ê maximum of kfxx k , kfyy k , and kfxy k is 6 Ê M œ 6 Ê kE(xß y)k Ÿ
" #
(6) akx 1k ky 1kb# œ
" #
(6)(0.1 0.2)# œ 0.27
57. f(1ß 0ß 0) œ 0, fx (1ß 0ß 0) œ y 3zk Ð1ß0ß0Ñ œ 0, fy (1ß 0ß 0) œ x 2zk Ð1ß0ß0Ñ œ 1, fz (1ß 0ß 0) œ 2y 3xk Ð1ß0ß0Ñ œ 3 Ê L(xß yß z) œ 0(x 1) (y 0) 3(z 0) œ y 3z; f(1ß 1ß 0) œ 1, fx (1ß 1ß 0) œ 1, fy (1ß 1ß 0) œ 1, fz ("ß "ß !) œ 1 Ê L(xß yß z) œ 1 (x 1) (y 1) 1(z 0) œ x y z 1 58. f ˆ0ß !ß 14 ‰ œ 1, fx ˆ!ß 0ß 14 ‰ œ È2 sin x sin (y z)¹
ˆ0ß0ß 1 ‰
œ 0, fy ˆ!ß 0ß 14 ‰ œ È2 cos x cos (y z)¹
4
fz ˆ!ß 0ß 14 ‰ œ È2 cos x cos (y z)¹
ˆ0ß0ß 1 ‰
È2 #
œ 1 Ê L(xß yß z) œ 1 1(y 0) 1 ˆz 14 ‰ œ 1 y z
Ê L(xß yß z) œ
È2 È2 È2 ˆ1 1 ‰ ˆ1 1 ‰ # , fy 4 ß 4 ß 0 œ # , fz 4 ß 4 ß 0 œ # È È È È È #2 ˆy 14 ‰ #2 (z 0) œ #2 #2 x #2
, fx ˆ 14 ß 14 ß 0‰ œ È2 #
È2 #
ˆx 14 ‰
œ 1,
4
4
f ˆ 14 ß 14 ß 0‰ œ
ˆ0ß0ß 1 ‰
y
È2 #
z
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
1 4
;
868
Chapter 14 Partial Derivatives
59. V œ 1r# h Ê dV œ 21rh dr 1r# dh Ê dVk Ð1Þ5ß5280Ñ œ 21(1.5)(5280) dr 1(1.5)# dh œ 15,8401 dr 2.251 dh. You should be more careful with the diameter since it has a greater effect on dV. 60. df œ (2x y) dx (x 2y) dy Ê df k Ð1ß2Ñ œ 3 dy Ê f is more sensitive to changes in y; in fact, near the point (1ß 2) a change in x does not change f. 61. dI œ
" R
dV
V R#
" 100
dR Ê dI¸ Ð24ß100Ñ œ
dV
24 100#
dR Ê dI¸ dVœ1ßdRœ20 œ 0.01 (480)(.0001) œ 0.038,
" ‰ 20 ‰ or increases by 0.038 amps; % change in V œ (100) ˆ 24 ¸ 4.17%; % change in R œ ˆ 100 (100) œ 20%;
Iœ
24 100
œ 0.24 Ê estimated % change in I œ
dI I
‚ 100 œ
0.038 0.24
‚ 100 ¸ 15.83% Ê more sensitive to voltage change.
62. A œ 1ab Ê dA œ 1b da 1a db Ê dAk Ð10ß16Ñ œ 161 da 101 db; da œ „ 0.1 and db œ „ 0.1 ¸ ¸ 2.61 ¸ Ê dA œ „ 261(0.1) œ „ 2.61 and A œ 1(10)(16) œ 1601 Ê ¸ dA A ‚ 100 œ 1601 ‚ 100 ¸ 1.625% 63. (a) y œ uv Ê dy œ v du u dv; percentage change in u Ÿ 2% Ê kduk Ÿ 0.02, and percentage change in v Ÿ 3% Ê kdvk Ÿ 0.03;
dy y
Ÿ 2% 3% œ 5% (b) z œ u v Ê dzz œ
œ
v du u dv uv
du dv uv
œ
œ
du uv
Ê ¸ dzz ‚ 100¸ Ÿ ¸ du u ‚ 100 64. C œ Ê
dv v
du u
dv uv
Þ
Þ
Þ
Þ
Þ
Þ
Ÿ
¸ du Ê ¹ dy y ‚ 100¹ œ u ‚ 100 du u
dv v
dv v
¸ ¸ dv ¸ ‚ 100¸ Ÿ ¸ du u ‚ 100 v ‚ 100
(since u 0, v 0)
‚ 100¸ œ ¹ dy y ‚ 100¹
(0.425)(7) 7 71.84w0 425 h0 725 Ê Cw œ 71.84w1 425 h0 725 2.975 5.075 dC œ 71.84w 1 425 h0 725 dw 71.84w0 425 h1 725 Þ
dv v
Þ
and Ch œ
(0.725)(7) 71.84w0 425 h1 725 Þ
Þ
dh; thus when w œ 70 and h œ 180 we have
dCk Ð70ß180Ñ ¸ (0.00000225) dw (0.00000149) dh Ê 1 kg error in weight has more effect 65. fx (xß y) œ 2x y 2 œ 0 and fy (xß y) œ x 2y 2 œ 0 Ê x œ 2 and y œ 2 Ê (2ß 2) is the critical point; # œ 3 0 and fxx 0 Ê local minimum value fxx (2ß 2) œ 2, fyy (#ß 2) œ 2, fxy (#ß 2) œ 1 Ê fxx fyy fxy of f(#ß 2) œ 8 66. fx (xß y) œ 10x 4y 4 œ 0 and fy (xß y) œ 4x 4y 4 œ 0 Ê x œ 0 and y œ 1 Ê (0ß 1) is the critical point; # œ 56 0 Ê saddle point with f(0ß 1) œ 2 fxx (0ß 1) œ 10, fyy (0ß 1) œ 4, fxy (0ß 1) œ 4 Ê fxx fyy fxy 67. fx (xß y) œ 6x# 3y œ 0 and fy (xß y) œ 3x 6y# œ 0 Ê y œ 2x# and 3x 6 a4x% b œ 0 Ê x a1 8x$ b œ 0 Ê x œ 0 and y œ 0, or x œ "# and y œ "# Ê the critical points are (0ß 0) and ˆ "# ß "# ‰ . For (!ß !):
# fxx (!ß !) œ 12xk Ð0ß0Ñ œ 0, fyy (!ß !) œ 12yk Ð0ß0Ñ œ 0, fxy (!ß 0) œ 3 Ê fxx fyy fxy œ 9 0 Ê saddle point with # f(0ß 0) œ 0. For ˆ "# ß "# ‰: fxx œ 6, fyy œ 6, fxy œ 3 Ê fxx fyy fxy œ 27 0 and fxx 0 Ê local maximum " " " value of f ˆ # ß # ‰ œ 4
68. fx (xß y) œ 3x# 3y œ 0 and fy (xß y) œ 3y# 3x œ 0 Ê y œ x# and x% x œ 0 Ê x ax$ 1b œ 0 Ê the critical points are (0ß 0) and (1ß 1) . For (!ß !): fxx (!ß !) œ 6xk Ð0ß0Ñ œ 0, fyy (!ß !) œ 6yk Ð0ß0Ñ œ 0, fxy (!ß 0) œ 3 # Ê fxx fyy fxy œ 9 0 Ê saddle point with f(0ß 0) œ 15. For (1ß 1): fxx (1ß 1) œ 6, fyy (1ß 1) œ 6, fxy (1ß 1) œ 3 # Ê fxx fyy fxy œ 27 0 and fxx 0 Ê local minimum value of f(1ß 1) œ 14
69. fx (xß y) œ 3x# 6x œ 0 and fy (xß y) œ 3y# 6y œ 0 Ê x(x 2) œ 0 and y(y 2) œ 0 Ê x œ 0 or x œ 2 and y œ 0 or y œ 2 Ê the critical points are (0ß 0), (0ß 2), (2ß 0), and (2ß 2) . For (!ß !): fxx (!ß !) œ 6x 6k Ð0ß0Ñ # œ 6, fyy (!ß !) œ 6y 6k Ð0ß0Ñ œ 6, fxy (!ß 0) œ 0 Ê fxx fyy fxy œ 36 0 Ê saddle point with f(0ß 0) œ 0. For # (0ß 2): fxx (!ß 2) œ 6, fyy (0ß #) œ 6, fxy (!ß 2) œ 0 Ê fxx fyy fxy œ 36 0 and fxx 0 Ê local minimum value of
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Chapter 14 Practice Exercises
869
# f(!ß 2) œ 4. For (#ß 0): fxx (2ß 0) œ 6, fyy (#ß 0) œ 6, fxy (2ß 0) œ 0 Ê fxx fyy fxy œ 36 0 and fxx 0
Ê local maximum value of f(2ß 0) œ 4. For (2ß 2): fxx (2ß 2) œ 6, fyy (2ß 2) œ 6, fxy (2ß 2) œ 0 # Ê fxx fyy fxy œ 36 0 Ê saddle point with f(2ß 2) œ 0. 70. fx (xß y) œ 4x$ 16x œ 0 Ê 4x ax# 4b œ 0 Ê x œ 0, 2, 2; fy (xß y) œ 6y 6 œ 0 Ê y œ 1. Therefore the critical points are (0ß 1), (2ß 1), and (2ß 1). For (!ß 1): fxx (!ß 1) œ 12x# 16k Ð0ß1Ñ œ 16, fyy (!ß 1) œ 6, fxy (!ß 1) œ 0 # Ê fxx fyy fxy œ 96 0 Ê saddle point with f(0ß 1) œ 3. For (2ß 1): fxx (2ß 1) œ 32, fyy (2ß 1) œ 6, # fxy (2ß 1) œ 0 Ê fxx fyy fxy œ 192 0 and fxx 0 Ê local minimum value of f(2ß 1) œ 19. For (#ß 1): # fxx (2ß 1) œ 32, fyy (#ß 1) œ 6, fxy (2ß 1) œ 0 Ê fxx fyy fxy œ 192 0 and fxx 0 Ê local minimum value of
f(2ß 1) œ 19. 71. (i)
On OA, f(xß y) œ f(0ß y) œ y# 3y for 0 Ÿ y Ÿ 4 Ê f w (!ß y) œ 2y 3 œ 0 Ê y œ 3# . But ˆ!ß 3# ‰
is not in the region. Endpoints: f(0ß 0) œ 0 and f(0ß 4) œ 28. (ii) On AB, f(xß y) œ f(xß x 4) œ x# 10x 28 for 0 Ÿ x Ÿ 4 Ê f w (xß x 4) œ 2x 10 œ 0 Ê x œ 5, y œ 1. But (5ß 1) is not in the region. Endpoints: f(4ß 0) œ 4 and f(!ß 4) œ 28. (iii) On OB, f(xß y) œ f(xß 0) œ x# 3x for 0 Ÿ x Ÿ 4 Ê f w (xß 0) œ 2x 3 Ê x œ critical point with f ˆ 3# ß !‰ œ 94 .
3 #
and y œ 0 Ê ˆ 3# ß 0‰ is a
Endpoints: f(0ß 0) œ 0 and f(%ß 0) œ 4. (iv) For the interior of the triangular region, fx (xß y) œ 2x y 3 œ 0 and fy (xß y) œ x 2y 3 œ 0 Ê x œ 3 and y œ 3. But (3ß 3) is not in the region. Therefore the absolute maximum is 28 at (0ß 4) and the absolute minimum is 94 at ˆ 3# ß !‰ .
On OA, f(xß y) œ f(0ß y) œ y# 4y 1 for 0 Ÿ y Ÿ 2 Ê f w (!ß y) œ 2y 4 œ 0 Ê y œ 2 and x œ 0. But (0ß 2) is not in the interior of OA. Endpoints: f(0ß 0) œ 1 and f(0ß 2) œ 5. (ii) On AB, f(xß y) œ f(xß 2) œ x# 2x 5 for 0 Ÿ x Ÿ 4 Ê f w (xß 2) œ 2x 2 œ 0 Ê x œ 1 and y œ 2 Ê (1ß 2) is an interior critical point of AB with f(1ß 2) œ 4. Endpoints: f(4ß 2) œ 13 and f(!ß 2) œ 5. (iii) On BC, f(xß y) œ f(4ß y) œ y# 4y 9 for 0 Ÿ y Ÿ 2 Ê f w (4ß y) œ 2y 4 œ 0 Ê y œ # and x œ 4. But (4ß 2) is not in the interior of BC. Endpoints: f(4ß 0) œ 9 and f(%ß 2) œ 13. (iv) On OC, f(xß y) œ f(xß 0) œ x# 2x 1 for 0 Ÿ x Ÿ 4 Ê f w (xß 0) œ 2x 2 œ 0 Ê x œ 1 and y œ 0 Ê (1ß 0) is an interior critical point of OC with f(1ß 0) œ 0. Endpoints: f(0ß 0) œ 1 and f(4ß 0) œ 9. (v) For the interior of the rectangular region, fx (xß y) œ 2x 2 œ 0 and fy (xß y) œ 2y 4 œ 0 Ê x œ 1 and y œ 2. But (1ß 2) is not in the interior of the region. Therefore the absolute maximum is 13 at (4ß 2) and the absolute minimum is 0 at (1ß 0).
72. (i)
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
870 73. (i)
Chapter 14 Partial Derivatives On AB, f(xß y) œ f(2ß y) œ y# y 4 for 2 Ÿ y Ÿ 2 Ê f w (2ß y) œ 2y 1 Ê y œ "# and x œ 2 Ê ˆ2ß "# ‰ is an interior critical point in AB
with f ˆ2ß "# ‰ œ 17 4 . Endpoints: f(2ß 2) œ 2 and
f(2ß 2) œ 2. On BC, f(xß y) œ f(xß 2) œ 2 for 2 Ÿ x Ÿ 2 Ê f w (xß 2) œ 0 Ê no critical points in the interior of BC. Endpoints: f(2ß 2) œ 2 and f(2ß 2) œ 2. (iii) On CD, f(xß y) œ f(2ß y) œ y# 5y 4 for 2 Ÿ y Ÿ 2 Ê f w (2ß y) œ 2y 5 œ 0 Ê y œ 5# and x œ 2. But ˆ#ß 5# ‰ is not in the region. (ii)
Endpoints: f(2ß 2) œ 18 and f(2ß 2) œ 2. (iv) On AD, f(xß y) œ f(xß 2) œ 4x 10 for 2 Ÿ x Ÿ 2 Ê f w (xß 2) œ 4 Ê no critical points in the interior of AD. Endpoints: f(2ß 2) œ 2 and f(2ß 2) œ 18. (v) For the interior of the square, fx (xß y) œ y 2 œ 0 and fy (xß y) œ 2y x 3 œ 0 Ê y œ 2 and x œ 1 Ê (1ß 2) is an interior critical point of the square with f(1ß 2) œ 2. Therefore the absolute maximum "‰ ˆ is 18 at (2ß 2) and the absolute minimum is 17 4 at #ß # . On OA, f(xß y) œ f(0ß y) œ 2y y# for 0 Ÿ y Ÿ 2 Ê f w (!ß y) œ 2 2y œ 0 Ê y œ 1 and x œ 0 Ê (!ß 1) is an interior critical point of OA with f(0ß 1) œ 1. Endpoints: f(0ß 0) œ 0 and f(0ß 2) œ 0. (ii) On AB, f(xß y) œ f(xß 2) œ 2x x# for 0 Ÿ x Ÿ 2 Ê f w (xß 2) œ 2 2x œ 0 Ê x œ 1 and y œ 2 Ê (1ß 2) is an interior critical point of AB with f(1ß 2) œ 1. Endpoints: f(0ß 2) œ 0 and f(2ß 2) œ 0. (iii) On BC, f(xß y) œ f(2ß y) œ 2y y# for 0 Ÿ y Ÿ 2 Ê f w (2ß y) œ 2 2y œ 0 Ê y œ 1 and x œ 2 Ê (2ß 1) is an interior critical point of BC with f(2ß 1) œ 1. Endpoints: f(2ß 0) œ 0 and f(2ß 2) œ 0. (iv) On OC, f(xß y) œ f(xß 0) œ 2x x# for 0 Ÿ x Ÿ 2 Ê f w (xß 0) œ 2 2x œ 0 Ê x œ 1 and y œ 0 Ê (1ß 0) is an interior critical point of OC with f(1ß 0) œ 1. Endpoints: f(0ß 0) œ 0 and f(0ß 2) œ 0. (v) For the interior of the rectangular region, fx (xß y) œ 2 2x œ 0 and fy (xß y) œ 2 2y œ 0 Ê x œ 1 and y œ 1 Ê (1ß 1) is an interior critical point of the square with f(1ß 1) œ 2. Therefore the absolute maximum is 2 at (1ß 1) and the absolute minimum is 0 at the four corners (0ß 0), (0ß 2), (2ß 2), and (2ß 0).
74. (i)
On AB, f(xß y) œ f(xß x 2) œ 2x 4 for 2 Ÿ x Ÿ 2 Ê f w (xß x 2) œ 2 œ 0 Ê no critical points in the interior of AB. Endpoints: f(2ß 0) œ 8 and f(2ß 4) œ 0. (ii) On BC, f(xß y) œ f(2ß y) œ y# 4y for 0 Ÿ y Ÿ 4 Ê f w (2ß y) œ 2y 4 œ 0 Ê y œ 2 and x œ 2 Ê (2ß 2) is an interior critical point of BC with f(2ß 2) œ 4. Endpoints: f(2ß 0) œ 0 and f(2ß 4) œ 0. (iii) On AC, f(xß y) œ f(xß 0) œ x# 2x for 2 Ÿ x Ÿ 2 Ê f w (xß 0) œ 2x 2 Ê x œ 1 and y œ 0 Ê (1ß 0) is an interior critical point of AC with f(1ß 0) œ 1. Endpoints: f(2ß 0) œ 8 and f(2ß 0) œ 0. (iv) For the interior of the triangular region, fx (xß y) œ 2x 2 œ 0 and fy (xß y) œ 2y 4 œ 0 Ê x œ 1 and y œ 2 Ê (1ß 2) is an interior critical point of the region with f(1ß 2) œ 3. Therefore the absolute maximum is 8 at (2ß 0) and the absolute minimum is 1 at (1ß 0).
75. (i)
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Chapter 14 Practice Exercises 76. (i)
(ii)
871
On AB, faxß yb œ faxß xb œ 4x# 2x% 16 for 2 Ÿ x Ÿ 2 Ê f w axß xb œ 8x 8x$ œ 0 Ê x œ 0 and y œ 0, or x œ 1 and y œ 1, or x œ 1 and y œ 1 Ê a0ß 0b, a1ß 1b, a1ß 1b are all interior points of AB with fa0ß 0b œ 16, fa1ß 1b œ 18, and fa1ß 1b œ 18. Endpoints: fa2ß 2b œ 0 and fa2ß 2b œ 0. On BC, faxß yb œ fa2ß yb œ 8y y% for 2 Ÿ y Ÿ 2 3 Ê f w a2ß yb œ 8 4y$ œ 0 Ê y œ È 2 and x œ 2 3 Ê Š2ß È 2‹ is an interior critical point of BC with 3 3 f Š2ß È 2‹ œ 6 È 2. Endpoints: fa2ß 2b œ 32 and fa2ß 2b œ 0.
3 (iii) On AC, faxß yb œ faxß 2b œ 8x x% for 2 Ÿ x Ÿ 2 Ê f w axß 2b œ 8 4x$ œ 0 Ê x œ È 2 and y œ 2 3 3 3 Ê ŠÈ 2ß 2‹ is an interior critical point of AC with f ŠÈ 2ß 2‹ œ 6 È 2. Endpoints:
fa2ß 2b œ 0 and fa2ß 2b œ 32. (iv) For the interior of the triangular region, fx axß yb œ 4y 4x$ œ 0 and fy axß yb œ 4x 4y$ œ 0 Ê x œ 0 and y œ 0, or x œ 1 and y œ 1 or x œ 1 and y œ 1. But neither of the points a0ß 0b and a1ß 1b, or a1ß 1b are interior to the region. Therefore the absolute maximum is 18 at (1ß 1) and (1ß 1), and the absolute minimum is 32 at a2ß 2b. On AB, f(xß y) œ f(1ß y) œ y$ 3y# 2 for 1 Ÿ y Ÿ 1 Ê f w (1ß y) œ 3y# 6y œ 0 Ê y œ 0 and x œ 1, or y œ 2 and x œ 1 Ê (1ß 0) is an interior critical point of AB with f(1ß 0) œ 2; (1ß 2) is outside the boundary. Endpoints: f(1ß 1) œ 2 and f(1ß 1) œ 0. (ii) On BC, f(xß y) œ f(xß 1) œ x$ 3x# 2 for 1 Ÿ x Ÿ 1 Ê f w (xß 1) œ 3x# 6x œ 0 Ê x œ 0 and y œ 1, or x œ 2 and y œ 1 Ê (0ß 1) is an interior critical point of BC with f(!ß 1) œ 2; (2ß 1) is outside the boundary. Endpoints: f("ß 1) œ 0 and f("ß 1) œ 2. (iii) On CD, f(xß y) œ f("ß y) œ y$ 3y# 4 for 1 Ÿ y Ÿ 1 Ê f w ("ß y) œ 3y# 6y œ 0 Ê y œ 0 and x œ 1, or y œ 2 and x œ 1 Ê ("ß 0) is an interior critical point of CD with f("ß 0) œ 4; (1ß 2) is outside the boundary. Endpoints: f(1ß 1) œ 2 and f("ß 1) œ 0. (iv) On AD, f(xß y) œ f(xß 1) œ x$ 3x# 4 for 1 Ÿ x Ÿ 1 Ê f w (xß 1) œ 3x# 6x œ 0 Ê x œ 0 and y œ 1, or x œ 2 and y œ 1 Ê (0ß 1) is an interior point of AD with f(0ß 1) œ 4; (#ß 1) is outside the boundary. Endpoints: f(1ß 1) œ 2 and f("ß 1) œ 0. (v) For the interior of the square, fx (xß y) œ 3x# 6x œ 0 and fy (xß y) œ 3y# 6y œ 0 Ê x œ 0 or x œ 2, and y œ 0 or y œ 2 Ê (0ß 0) is an interior critical point of the square region with f(!ß 0) œ 0; the points (0ß 2), (2ß 0), and (2ß 2) are outside the region. Therefore the absolute maximum is 4 at (1ß 0) and the absolute minimum is 4 at (0ß 1).
77. (i)
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
872
Chapter 14 Partial Derivatives
On AB, f(xß y) œ f(1ß y) œ y$ 3y for 1 Ÿ y Ÿ 1 Ê f w (1ß y) œ 3y# 3 œ 0 Ê y œ „ 1 and x œ 1 yielding the corner points (1ß 1) and (1ß 1) with f(1ß 1) œ 2 and f(1ß 1) œ 2. (ii) On BC, f(xß y) œ f(xß 1) œ x$ 3x 2 for 1 Ÿ x Ÿ 1 Ê f w (xß 1) œ 3x# 3 œ 0 Ê no solution. Endpoints: f("ß 1) œ 2 and f("ß 1) œ 6. (iii) On CD, f(xß y) œ f("ß y) œ y$ 3y 2 for 1 Ÿ y Ÿ 1 Ê f w ("ß y) œ 3y# 3 œ 0 Ê no solution. Endpoints: f(1ß 1) œ 6 and f("ß 1) œ 2. (iv) On AD, f(xß y) œ f(xß 1) œ x$ 3x for 1 Ÿ x Ÿ 1 Ê f w (xß 1) œ 3x# 3 œ 0 Ê x œ „ 1 and y œ 1 yielding the corner points (1ß 1) and (1ß 1) with f(1ß 1) œ 2 and f(1ß 1) œ 2 (v) For the interior of the square, fx (xß y) œ 3x# 3y œ 0 and fy (xß y) œ 3y# 3x œ 0 Ê y œ x# and x% x œ 0 Ê x œ 0 or x œ 1 Ê y œ 0 or y œ 1 Ê (!ß 0) is an interior critical point of the square region with f(0ß 0) œ 1; (1ß 1) is on the boundary. Therefore the absolute maximum is 6 at ("ß 1) and the absolute minimum is 2 at (1ß 1) and (1ß 1).
78. (i)
79. ™ f œ 3x# i 2yj and ™ g œ 2xi 2yj so that ™ f œ - ™ g Ê 3x# i 2yj œ -(2xi 2yj) Ê 3x# œ 2x- and 2y œ 2y- Ê - œ 1 or y œ 0. CASE 1: - œ 1 Ê 3x# œ 2x Ê x œ 0 or x œ 23 ; x œ 0 Ê y œ „ 1 yielding the points (0ß 1) and (!ß 1); x œ Ê yœ „
È5 3
yielding the points Š 32 ß
È5 3 ‹
and Š 32 ß
2 3
È5 3 ‹.
CASE 2: y œ 0 Ê x# 1 œ 0 Ê x œ „ 1 yielding the points (1ß 0) and (1ß 0). Evaluations give f a!ß „ 1b œ 1, f Š 23 ß „
È5 3 ‹
œ
23 27
, f("ß 0) œ 1, and f("ß 0) œ 1. Therefore the absolute
maximum is 1 at a!ß „ 1b and (1ß 0), and the absolute minimum is 1 at ("ß !). 80. ™ f œ yi xj and ™ g œ 2xi 2yj so that ™ f œ - ™ g Ê yi xj œ -(2xi 2yj) Ê y œ 2-x and xy œ 2-y Ê x œ 2-(2-x) œ 4-# x Ê x œ 0 or 4-# œ 1. CASE 1: x œ 0 Ê y œ 0 but (0ß 0) does not lie on the circle, so no solution. CASE 2: 4-# œ 1 Ê - œ "# or - œ "# . For - œ "# , y œ x Ê 1 œ x# y# œ 2x# Ê x œ C œ „ È"2 yielding the points Š È"2 ß È"2 ‹ and Š È"2 , È"2 ‹ . For - œ #" , y œ x Ê 1 œ x# y# œ 2x# Ê x œ „
" È2
and
y œ x yielding the points Š È"2 ß È"2 ‹ and Š È"2 , È"2 ‹ . Evaluations give the absolute maximum value f Š È"2 ß È"2 ‹ œ f Š È"2 ß È"2 ‹ œ
" #
and the absolute minimum
value f Š È"2 ß È"2 ‹ œ f Š È"2 ß È"2 ‹ œ #" . 81. (i) f(xß y) œ x# 3y# 2y on x# y# œ 1 Ê ™ f œ 2xi (6y 2)j and ™ g œ 2xi 2yj so that ™ f œ - ™ g Ê 2xi (6y 2)j œ -(2xi 2yj) Ê 2x œ 2x- and 6y 2 œ 2y- Ê - œ 1 or x œ 0. CASE 1: - œ 1 Ê 6y 2 œ 2y Ê y œ "# and x œ „
È3 #
yielding the points Š „
È3 #
ß #" ‹ .
CASE 2: x œ 0 Ê y# œ 1 Ê y œ „ 1 yielding the points a!ß „ 1b . Evaluations give f Š „
È3 #
ß "# ‹ œ
" #
, f(0ß 1) œ 5, and f(!ß 1) œ 1. Therefore
" #
and 5 are the extreme
values on the boundary of the disk. (ii) For the interior of the disk, fx (xß y) œ 2x œ 0 and fy (xß y) œ 6y 2 œ 0 Ê x œ 0 and y œ "3 Ê ˆ!ß 13 ‰ is an interior critical point with f ˆ!ß 3" ‰ œ 3" . Therefore the absolute maximum of f on the disk is 5 at (0ß 1) and the absolute minimum of f on the disk is "3 at ˆ!ß 3" ‰ .
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Chapter 14 Practice Exercises
873
82. (i) f(xß y) œ x# y# 3x xy on x# y# œ 9 Ê ™ f œ (2x 3 y)i (2y x)j and ™ g œ 2xi 2yj so that ™ f œ - ™ g Ê (2x 3 y)i (2y x)j œ -(2xi 2yj) Ê 2x 3 y œ 2x- and 2y x œ 2yÊ 2x(" -) y œ 3 and x 2y(1 -) œ 0 Ê 1 - œ
x 2y
x and (2x) Š 2y ‹ y œ 3 Ê x# y# œ 3y
Ê x# œ y# 3y. Thus, 9 œ x# y# œ y# 3y y# Ê 2y# 3y 9 œ 0 Ê (2y 3)(y 3) œ 0 Ê y œ 3, 3# . For y œ 3, x# y# œ 9 Ê x œ 0 yielding the point (0ß 3). For y œ 3# , x# y# œ 9 Ê x#
9 4
œ 9 Ê x# œ
Ê xœ „
27 4
È
¸ 20.691, and f Š 3 # 3 , 3# ‹ œ 9
27È3 4
3È 3 #
È
. Evaluations give f(0ß 3) œ 9, f Š 3 # 3 ß 3# ‹ œ 9
27È3 4
¸ 2.691.
(ii) For the interior of the disk, fx (xß y) œ 2x 3 y œ 0 and fy (xß y) œ 2y x œ 0 Ê x œ 2 and y œ 1 Ê (2ß 1) is an interior critical point of the disk with f(2ß 1) œ 3. Therefore, the absolute maximum of f on the disk is 9
27È3 4
È
at Š 3 # 3 ß 3# ‹ and the absolute minimum of f on the disk is 3 at (2ß 1).
83. ™ f œ i j k and ™ g œ 2xi 2yj 2zk so that ™ f œ - ™ g Ê i j k œ -(2xi 2yj 2zk) Ê 1 œ 2x-, 1 œ 2y-, 1 œ 2z- Ê x œ y œ z œ -" . Thus x# y# z# œ 1 Ê 3x# œ 1 Ê x œ „ È"3 yielding the points Š È"3 ß È"3 ,
" È3 ‹
and Š È"3 ,
f Š È"3 ß È"3 ß È"3 ‹ œ
3 È3
" È3
, È"3 ‹ . Evaluations give the absolute maximum value of
œ È3 and the absolute minimum value of f Š È"3 ß È"3 ß È"3 ‹ œ È3.
84. Let f(xß yß z) œ x# y# z# be the square of the distance to the origin and g(xß yß z) œ x# zy 4. Then ™ f œ 2xi 2yj 2zk and ™ g œ 2xi zj yk so that ™ f œ - ™ g Ê 2x œ 2-x, 2y œ -z, and 2z œ -y Ê x œ 0 or - œ 1. CASE 1: x œ 0 Ê zy œ 4 Ê z œ 4y and y œ 4z Ê 2 Š y4 ‹ œ -y and 2 ˆ 4z ‰ œ -z Ê 8 -
8 -
œ y# and
œ z# Ê y# œ z# Ê y œ „ z. But y œ x Ê z# œ 4 leads to no solution, so y œ z Ê z# œ 4
Ê z œ „ 2 yielding the points (0ß 2ß 2) and (0ß 2ß 2). CASE 2: - œ 1 Ê 2z œ y and 2y œ z Ê 2y œ ˆ y# ‰ Ê 4y œ y Ê y œ 0 Ê z œ 0 Ê x# 4 œ 0 Ê
x œ „ 2 yielding the points (2ß 0ß 0) and (2ß !ß 0). Evaluations give f(0ß 2ß 2) œ f(0ß 2ß 2) œ 8 and f(2ß 0ß 0) œ f(2ß !ß 0) œ 4. Thus the points (2ß 0ß 0) and (2ß !ß 0) on the surface are closest to the origin.
85. The cost is f(xß yß z) œ 2axy 2bxz 2cyz subject to the constraint xyz œ V. Then ™ f œ - ™ g Ê 2ay 2bz œ -yz, 2ax 2cz œ -xz, and 2bx 2cy œ -xy Ê 2axy 2bxz œ -xyz, 2axy 2cyz œ -xyz, and 2bxz 2cyz œ -xyz Ê 2axy 2bxz œ 2axy 2cyz Ê y œ ˆ bc ‰ x. Also 2axy 2bxz œ 2bxz 2cyz Ê z œ ˆ ca ‰ x. Then x ˆ bc x‰ ˆ ca x‰ œ V Ê x$ œ #
Height œ z œ ˆ ac ‰ Š cabV ‹
"Î$
#
c# V ab
œ Š abcV ‹
#
Ê width œ x œ Š cabV ‹
"Î$
"Î$
#
, Depth œ y œ ˆ bc ‰ Š cabV ‹
"Î$
#
œ Š bacV ‹
"Î$
, and
.
86. The volume of the pyramid in the first octant formed by the plane is V(aß bß c) œ
" 3
ˆ "# ab‰ c œ
" 6
abc. The point
(2ß 1ß 2) on the plane Ê "b 2c œ 1. We want to minimize V subject to the constraint 2bc ac 2ab œ abc. ac ab Thus, ™ V œ bc 6 i 6 j 6 k and ™ g œ (c 2b bc)i (2c 2a ac)j (2b a ab)k so that ™ V œ ac ab abc Ê bc 6 œ -(c 2b bc), 6 œ -(2c 2a ac), and 6 œ -(2b a ab) Ê 6 œ -(ac 2ab abc), abc abc 6 œ -(2bc 2ab abc), and 6 œ -(2bc ac abc) Ê -ac œ 2-bc and 2-ab œ 2-bc. Now - Á 0 since 2 a
a Á 0, b Á 0, and c Á 0 Ê ac œ 2bc and ab œ bc Ê a œ 2b œ c. Substituting into the constraint equation gives y 2 2 2 x z a a a œ 1 Ê a œ 6 Ê b œ 3 and c œ 6. Therefore the desired plane is 6 3 6 œ 1 or x 2y z œ 6.
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
™g
874
Chapter 14 Partial Derivatives
87. ™ f œ (y z)i xj xk , ™ g œ 2xi 2yj , and ™ h œ zi xk so that ™ f œ - ™ g . ™ h Ê (y z)i xj xk œ -(2xi 2yj) .(zi xk) Ê y z œ 2-x .z, x œ 2-y, x œ .x Ê x œ 0 or . œ 1. CASE 1: x œ 0 which is impossible since xz œ 1. CASE 2: . œ 1 Ê y z œ 2-x z Ê y œ 2-x and x œ 2-y Ê y œ (2-)(2-y) Ê y œ 0 or 4-# œ 1. If y œ 0, then x# œ 1 Ê x œ „ 1 so with xz œ 1 we obtain the points (1ß 0ß 1) and (1ß 0ß 1). If 4-# œ 1, then - œ „ "# . For - œ "# , y œ x so x# y# œ 1 Ê x# œ "# Ê xœ „
" È2
with xz œ 1 Ê z œ „ È2, and we obtain the points Š È"2 ß È"2 ß È2‹ and
Š È"2 ß È"2 ß È2‹ . For - œ
" #
, y œ x Ê x# œ
" #
Ê xœ „
" È2
with xz œ 1 Ê z œ „ È2,
and we obtain the points Š È"2 ß È"2 , È2‹ and Š È"2 ß È"2 ß È2‹ . Evaluations give f(1ß 0ß 1) œ 1, f(1ß 0ß 1) œ 1, f Š È"2 ß È"2 ß È2‹ œ f Š È"2 ß È"2 ß È2‹ œ
3 #
, and f Š È"2 ß È"2 ß È2‹ œ
3 #
" #
, f Š È"2 ß È"2 , È2‹ œ 3 #
. Therefore the absolute maximum is
Š È"2 ß È"2 ß È2‹ and Š È"2 ß È"2 ß È2‹ , and the absolute minimum is
" #
" #
,
at
at Š È"2 ß È"2 ß È2‹ and
Š È"2 ß È"2 ß È2‹ . 88. Let f(xß yß z) œ x# y# z# be the square of the distance to the origin. Then ™ f œ 2xi 2yj 2zk , ™ g œ i j k , and ™ h œ 4xi 4yj 2zk so that ™ f œ - ™ g . ™ h Ê 2x œ - 4x., 2y œ - 4y., and 2z œ - 2z. Ê - œ 2x(1 2.) œ 2y(1 2.) œ 2z(1 2.) Ê x œ y or . œ "# . CASE 1: x œ y Ê z# œ 4x# Ê z œ „ 2x so that x y z œ 1 Ê x x 2x œ 1 or x x 2x œ 1 (impossible) Ê x œ "4 Ê y œ "4 and z œ "# yielding the point ˆ "4 ß "4 ß "# ‰ . CASE 2: . œ
" #
Ê - œ 0 Ê 0 œ 2z(1 1) Ê z œ 0 so that 2x# 2y# œ 0 Ê x œ y œ 0. But the origin
(!ß 0ß 0) fails to satisfy the first constraint x y z œ 1. Therefore, the point ˆ "4 ß 4" ß "# ‰ on the curve of intersection is closest to the origin. 89. (a) y, z are independent with w œ x# eyz and z œ x# y# Ê œ a2xeyz b
`x `y
`w `y
`w `x `w `y `w `z `x `y `y `y `z `y œ 2x `` xy 2y Ê `` xy œ yx
œ
azx# eyz b (1) ayx# eyz b (0); z œ x# y# Ê 0
; therefore,
Š ``wy ‹ œ a2xeyz b ˆ xy ‰ zx# eyz œ a2y zx# b eyz z
(b) z, x are independent with w œ x# eyz and z œ x# y# Ê œ a2xeyz b (0) azx# eyz b
`y `z
`w `z
œ
`w `x `x `z
ayx# eyz b (1); z œ x# y# Ê 1 œ 0 2y
1 ˆ ``wz ‰ œ azx# eyz b Š 2y ‹ yx# eyz œ x# eyz Šy x
`w `y `w `z `y `z `z `z `y `y " ` z Ê ` z œ #y
; therefore,
z 2y ‹
(c) z, y are independent with w œ x# eyz and z œ x# y# Ê
`w `z
œ
œ a2xeyz b `` xz azx# eyz b (0) ayx# eyz b (1); z œ x# y# Ê 1 1 ‰ ˆ ``wz ‰ œ a2xeyz b ˆ 2x yx# eyz œ a1 x# yb eyz
`w `x `w `y `w `z `x `z `y `z `z `z œ 2x `` xz 0 Ê `` xz œ #"x
; therefore,
y
90. (a) T, P are independent with U œ f(Pß Vß T) and PV œ nRT Ê ``UT œ ``UP `` TP ‰ ˆ ``VT ‰ ˆ ``UT ‰ (1); PV œ nRT Ê P ``VT œ nR Ê ``VT œ œ ˆ ``UP ‰ (0) ˆ `` U V ˆ ``UT ‰ œ ˆ `` U ‰ ˆ nR ‰ V P P
`U `T
`U `V `U `T `V `T `T `T nR P ; therefore,
`U `P `U `V (b) V, T are independent with U œ f(Pß Vß T) and PV œ nRT Ê `` U V œ `P `V `V `V U‰ œ ˆ ``UP ‰ ˆ ``VP ‰ ˆ `` V (1) ˆ ``UT ‰ (0); PV œ nRT Ê V ``VP P œ (nR) ˆ ``VT ‰ œ 0 Ê
ˆ `` U ‰ V T
œ
ˆ ``UP ‰ ˆ VP ‰
`U `V
`U `T `T `V `P P `V œ V
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
; therefore,
Chapter 14 Practice Exercises
875
91. Note that x œ r cos ) and y œ r sin ) Ê r œ Èx# y# and ) œ tan" ˆ yx ‰ . Thus, `w `x
œ
`w `r `r `x
`w `) `) `x
œ ˆ ``wr ‰ Š Èx#x y# ‹ ˆ ``w) ‰ Š x#yy# ‹ œ (cos ))
`w `r
ˆ sinr ) ‰
`w `)
`w `y
œ
`w `r `r `y
`w `) ` ) )y
œ ˆ ``wr ‰ Š Èx#y y# ‹ ˆ ``w) ‰ Š x# x y# ‹ œ (sin ))
`w `r
ˆ cosr ) ‰
`w `)
92. zx œ fu 93.
`u `y
`v `x
fv
œ afu afv , and zy œ fu
`u `x œ a " `w " `w a `x œ b `y
œ b and
Ê 94.
`u `x
`w `x
œ
and
`w `z
œ
2 rs
œ
Ê
œ
2 x# y# 2z
and
`w `s
œ
`w dw ` x œ du b ``wx œ a
" (r s)#
`w `x `x `s
`w `y `y `s
Solving this system yields Ê ae cos vb
`u `y
`u `x
ae sin vb
u
`v `y
dw ` u du ` y
œ
2(r s) 2 ar# 2rs s# b
œ
" rs
œ
`w `x `x `r
`g `)
œ
Ê
`f `x `x `) ` #g ` )#
`f `y `y `)
œ (r sin )) Š `` x)
`y `) ‹
" rs
rs (r s)#
`w `y
`w `z `z `r
dw du
œ œ
Ê
`f `x
`v `y
" rs
œ
dw du
2(r s) #(r s)#
and
" `w b `y
œ
rs (r s)#
œ
dw du
,
’ (r " s)# “ (2s) œ
2r 2s (r s)#
2 rs
y œ 0 Ê aeu sin vb
`u `x
aeu cos vb
`v `x
œ 0.
Similarly, e cos v x œ 0 u
`u `y
œ eu cos v. Therefore Š `` ux i
(r cos ))
œ
rs (r s)#
’ (r " s)# “ (2r) œ
`v u ` x œ 1; e sin v `v u sin v. ` x œ e
aeu cos vb `u `y
`v `y
j‹ † Š `` vx i
œ 1. Solving this
`v `y
j‹
u
cos vb jd œ 0 Ê the vectors are orthogonal Ê the angle
`f `x
(r cos )) Š ``x`fy
sin vb i ae
` #f ` y ` y` x ` ) ‹
" `w a `x
2y x# y# 2z
œ 0 and e sin v y œ 0 Ê aeu sin vb u
`x `)
`w `y `y `r
,
œb
u
u
#
œ
cos v and
œ eu sin v and
œ (r sin )) Š `` xf#
and
aeu sin vb
`u `y
œ (r sin ))
dw du
`w `z `z `s
œ cae cos vb i ae sin vb jd † cae between the vectors is the constant 1# . 96.
œ bfu bfv
œ
`u `x u
œe
u
second system yields
`v `y
fv
`w `y
œa
`w `r
Ê
95. eu cos v x œ 0 Ê aeu cos vb u
`u `x `w `y
2(r s) (r s)# (r s)# 4rs -
œ
2x x# y# 2z
Ê
`u `y
;
`f `y
(r cos ))
(r cos )) (r cos )) Š `` x)
`y `) ‹
#
`x `)
` #f ` y ` y# ` ) ‹
(r sin ))
`f `y
(r sin ))
œ (r sin ) r cos ))(r sin ) r cos )) (r cos ) r sin )) œ (2)(2) (0 2) œ 4 2 œ 2 at (rß )) œ ˆ2ß 1# ‰ . 97. (y z)# (z x)# œ 16 Ê ™ f œ 2(z x)i 2(y z)j 2(y 2z x)k ; if the normal line is parallel to the yz-plane, then x is constant Ê `` xf œ 0 Ê 2(z x) œ 0 Ê z œ x Ê (y z)# (z z)# œ 16 Ê y z œ „ 4. Let x œ t Ê z œ t Ê y œ t „ 4. Therefore the points are (tß t „ 4ß t), t a real number.
98. Let f(xß yß z) œ xy yz zx x z# œ 0. If the tangent plane is to be parallel to the xy-plane, then ™ f is perpendicular to the xy-plane Ê ™ f † i œ 0 and ™ f † j œ 0. Now ™ f œ (y z 1)i (x z)j (y x 2z)k so that ™ f † i œ y z 1 œ 0 Ê y z œ 1 Ê y œ 1 z, and ™ f † j œ x z œ 0 Ê x œ z. Then z(1 z) (" z)z z(z) (z) z# œ 0 Ê z 2z# œ 0 Ê z œ "# or z œ 0. Now z œ "# Ê x œ "# and y œ Ê ˆ "# ß "# ß "# ‰ is one desired point; z œ 0 Ê x œ 0 and y œ 1 Ê (0ß 1ß 0) is a second desired point. 99. ™ f œ -(xi yj zk) Ê
`f `x
œ -x Ê f(xß yß z) œ
" #
-x# g(yß z) for some function g Ê -y œ
`f `y
œ
`g `y
-y# h(z) for some function h Ê -z œ `` zf œ `` gz œ hw (z) Ê h(z) œ #" -z# C for some arbitrary constant C Ê g(yß z) œ "# -y# ˆ "# -z# C‰ Ê f(xß yß z) œ "# -x# "# -y# "# -z# C Ê f(0ß 0ß a) œ "# -a# C Ê g(yß z) œ
" #
and f(0ß 0ß a) œ
" #
-(a)# C Ê f(0ß 0ß a) œ f(0ß 0ß a) for any constant a, as claimed.
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
" #
876
Chapter 14 Partial Derivatives ß
f(0 su" ß 0 su# ß 0 su$ )f(0ß 0ß 0)
œ lim sÄ0
‰ 100. ˆ df ds u (0 0 0) ß ß
,s0
s
És# u#" s# u## s# u#$ 0
œ lim sÄ0
s
,s0
sÉu#" u## u#$
œ lim œ lim kuk œ 1; s sÄ0 sÄ0 however, ™ f œ Èx# xy# z# i Èx# yy# z# j Èx# zy# z# k fails to exist at the origin (0ß 0ß 0) 101. Let f(xß yß z) œ xy z 2 Ê ™ f œ yi xj k . At (1ß 1ß 1), we have ™ f œ i j k Ê the normal line is x œ 1 t, y œ 1 t, z œ 1 t, so at t œ 1 Ê x œ 0, y œ 0, z œ 0 and the normal line passes through the origin. 102. (b) f(xß yß z) œ x# y# z# œ 4 Ê ™ f œ 2xi 2yj 2zk Ê at (2ß 3ß 3) the gradient is ™ f œ 4i 6j 6k which is normal to the surface (c) Tangent plane: 4x 6y 6z œ 8 or 2x 3y 3z œ 4 Normal line: x œ 2 4t, y œ 3 6t, z œ 3 6t
CHAPTER 14 ADDITIONAL AND ADVANCED EXERCISES fx (0ß h) fx (0ß 0) h
1. By definition, fxy (!ß 0) œ lim
hÄ0
so we need to calculate the first partial derivatives in the
numerator. For (xß y) Á (0ß 0) we calculate fx (xß y) by applying the differentiation rules to the formula for
fy (xß y) œ
00 h
œ lim
hÄ0
2.
`w `x
x$ xy# x# y#
x# y y$ x# y#
ax# y# b (2x) ax# y# b (2x) ax # y # b #
4x# y$ Ê fx (0ß h) ax # y # b# f(0ß0) For (xß y) œ (0ß 0) we apply the definition: fx (!ß 0) œ lim f(hß 0) œ lim 0 h 0 œ h hÄ0 hÄ0 f (hß 0) fy (!ß 0) fxy (0ß 0) œ lim hh 0 œ 1. Similarly, fyx (0ß 0) œ lim y , so for (xß y) Á h hÄ0 hÄ0
f(xß y): fx (xß y) œ
(xy)
4x$ y# ax# y# b#
Ê fy (hß 0) œ
h$ h#
x# y y $ x# y#
œ
$
œ hh# œ h. 0. Then by definition (0ß 0) we have
œ h; for (xß y) œ (0ß 0) we obtain fy (0ß 0) œ lim h0 h
œ 0. Then by definition fyx (0ß 0) œ lim
hÄ0
œ 1 ex cos y Ê w œ x ex cos y g(y);
`w `y
hÄ0
f(0ß h) f(!ß 0) h
œ 1. Note that fxy (0ß 0) Á fyx (0ß 0) in this case.
œ ex sin y gw (y) œ 2y ex sin y Ê gw (y) œ 2y
Ê g(y) œ y# C; w œ ln 2 when x œ ln 2 and y œ 0 Ê ln 2 œ ln 2 eln 2 cos 0 0# C Ê 0 œ 2 C Ê C œ 2. Thus, w œ x ex cos y g(y) œ x ex cos y y# 2. 3. Substitution of u u(x) and v œ v(x) in g(uß v) gives g(u(x)ß v(x)) which is a function of the independent variable x. Then, g(uß v) œ 'u f(t) dt Ê v
œ Š ``u
#
#
fzz œ Š ddr#f ‹ ˆ ``zr ‰ ` #r ` y#
œ
` g du ` u dx
` g dv ` v dx
œ Š ``u
#
df ` # r dr ` x#
'uv f(t) dt‹ dxdu Š ``v 'uv f(t) dt‹ dxdv
'vu f(t) dt‹ dudx Š ``v 'uv f(t) dt‹ dvdx œ f(u(x)) dudx f(v(x)) dvdx œ f(v(x)) dvdx f(u(x)) dudx
4. Applying the chain rules, fx œ
Ê
dg dx
œ
#
df ` r dr ` z#
x# z# 3 ˆÈx# y# z# ‰
df ` r dr ` x
#
Ê fxx œ Š ddr#f ‹ ˆ ``xr ‰
. Moreover,
; and
`r `z
œ
`r `x
œ
x È x # y # z#
z È x # y # z#
Ê
` #r ` z#
Ê
œ
#
` r ` x#
œ
#
#
. Similarly, fyy œ Š ddr#f ‹ Š ``yr ‹ #
#
y z 3 ˆÈx# y# z# ‰
x# y# 3 ˆÈ x # y # z # ‰
;
`r `y
œ
y È x # y # z#
. Next, fxx fyy fzz œ 0
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
df ` # r dr ` y#
and
Chapter 14 Additional and Advanced Exercises #
#
df dr
d dr
x#
(f w ) œ ˆ 2r ‰ f w , where f w œ
œ Cr# Ê f(r) œ Cr b œ
y # z# ‰
Ê
df dr
y#
d# f
x # y # z# ‰
x# y#
#
‰ Š ddr#f ‹ Š x# yz # z# ‹ ˆ df dr Œ ˆÈ Ê
y # z#
#
‰ Ê Š ddr#f ‹ Š x# xy# z# ‹ ˆ df dr Œ ˆÈ
3
df f
3
877
x # z#
Š dr# ‹ Š x# y# z# ‹ ˆ dr ‰ Œ ˆÈx# y# z# ‰3 d# f dr#
œ0 Ê
df
Š Èx# 2y# z# ‹
d# f dr#
œ0 Ê
df dr
2 df r dr
œ0
œ 2 rdr Ê ln f w œ 2 ln r ln C Ê f w œ Cr# , or
w
w
b for some constants a and b (setting a œ C)
a r
5. (a) Let u œ tx, v œ ty, and w œ f(uß v) œ f(u(tß x)ß v(tß y)) œ f(txß ty) œ tn f(xß y), where t, x, and y are independent variables. Then ntnc1 f(xß y) œ ``wt œ ``wu ``ut ``wv ``vt œ x ``wu y ``wv . Now, `w `w `u `w `v `w `w ˆ `w ‰ ˆ `w ‰ ˆ " ‰ ˆ ``wx ‰ . Likewise, ` x œ ` u ` x ` v ` x œ ` u (t) ` v (0) œ t ` u Ê ` u œ t `w `y
œ
`w `u `u `y
ntnc1 f(xß y) œ x `w `x
Ê
œ
`f `x
`w `v `v `y `w `u
`w `v
y
`w `y
and
œ ˆ ``wu ‰ (0) ˆ ``wv ‰ (t) Ê œ
`f `x
Ê nf(xß y) œ x
Also from part (a), œ
` `y
œ t#
ˆt
`w ‰ `v
` #w ` v` u
œt
` #w ` x#
` `x
œ
x
y
ˆ ``wx ‰
` `x
`w ‰ `u
t
œ
`f `x
`w `v . ` w `v ` v` u ` t
` w `u ` u# ` t
` #w ` u ` u` v ` y
Ê ˆ t"# ‰
`w `u
#
` #w ` x#
œ ˆ "t ‰ Š ``wy ‹ . Therefore,
œ ˆ xt ‰ ˆ ``wx ‰ ˆ yt ‰ Š ``wy ‹. When t œ 1, u œ x, v œ y, and w œ f(xß y)
(b) From part (a), ntnc1 f(xß y) œ x n(n 1)tnc2 f(xß y) œ x
`w `v
y
` #w ` v ` v# ` y
` #w ` u#
ˆt
` #w ` v#
œ t#
, ˆ t"# ‰
` #w ` y#
`f `y
, as claimed.
Differentiating with respect to t again we obtain
#
œ
y
œ
` #w ` u ` u` v ` t
œt
, and
` #w ` v#
` #w ` v ` v# ` t
y
` #w ` u ` u# ` x
t
` #w ` y` x
` `y
œ
, and ˆ t"# ‰
œ x#
` #w ` u#
2xy
` #w ` v ` v` u ` x
œ
# t# `` uw#
ˆ ``wx ‰ œ
` `y
ˆt
` #w ` y` x
œ
`w ‰ `u
,
` #w ` u` v
` #w ` y#
œt
œ
y# ` `y
` #w ` v#
.
Š ``wy ‹
` #w ` u ` u# ` y
t
` #w ` v ` v` u ` y
` #w ` v` u
‰ Š ``y`wx ‹ Š yt# ‹ Š `` yw# ‹ for t Á 0. When t œ 1, w œ f(xß y) and Ê n(n 1)tnc2 f(xß y) œ Š xt# ‹ Š `` xw# ‹ ˆ 2xy t# #
#
#
#
#
#
#
#
we have n(n 1)f(xß y) œ x# Š `` xf# ‹ 2xy Š ``x`fy ‹ y# Š `` yf# ‹ as claimed. 6. (a) lim
rÄ0
sin 6r 6r
œ lim
tÄ0
sin t t
œ 1, where t œ 6r
f(0 hß 0) f(0ß 0) h hÄ0 36 sin 6h lim œ0 12 hÄ0
(b) fr (0ß 0) œ lim œ
f(rß ) h) f(rß )) h hÄ0
(c) f) (rß )) œ lim
ˆ sin6h6h ‰ 1 h hÄ0
œ lim
œ lim
hÄ0
œ lim
hÄ0
6 cos 6h 6 12h
(applying l'Hopital's rule twice) s ˆ sin6r6r ‰ ˆ sin6r6r ‰ h hÄ0
œ lim
œ lim
0
hÄ0 h
7. (a) r œ xi yj zk Ê r œ krk œ Èx# y# z# and ™ r œ (b) rn œ ˆÈx# y# z# ‰
sin 6h 6h 6h#
œ0
x È x # y # z#
i
y È x # y # z#
j
z È x # y # z#
kœ
r r
n
ÐnÎ2Ñ
1
(d) dr œ dxi dyj dzk Ê r † dr œ x dx y dy z dz, and dr œ rx dx ry dy rz dz œ
x r
Ê ™ arn b œ nx ax# y# z# b (c) Let n œ 2 in part (b). Then
" #
ÐnÎ2Ñ 1
ÐnÎ2Ñ
i ny ax# y# z# b j nz ax# y# z# b k œ nrn 2 r # ™ ar# b œ r Ê ™ ˆ "# r# ‰ œ r Ê r# œ #" ax# y# z# b is the function. 1
dx
y r
dy
z r
dz
Ê r dr œ x dx y dy z dz œ r † dr (e) A œ ai bj ck Ê A † r œ ax by cz Ê ™ (A † r) œ ai bj ck œ A 8. f(g(t)ß h(t)) œ c Ê 0 œ
df dt
œ
` f dx ` x dt
` f dy ` y dt
œ Š `` xf i
`f `y
j‹ † Š dx dt i
dy dt
j‹ , where
dx dt
i
dy dt
j is the tangent vector
Ê ™ f is orthogonal to the tangent vector 9. f(xß yß z) œ xz# yz cos xy 1 Ê ™ f œ az# y sin xyb i (z x sin xy)j (2xz y)k Ê ™ f(0ß 0ß 1) œ i j Ê the tangent plane is x y œ 0; r œ (ln t)i (t ln t)j tk Ê rw œ ˆ "t ‰ i (ln t 1)j k ; x œ y œ 0, z œ 1 Ê t œ 1 Ê rw (1) œ i j k . Since (i j k) † (i j) œ rw (1) † ™ f œ 0, r is parallel to the plane, and r(1) œ 0i 0j k Ê r is contained in the plane.
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
878
Chapter 14 Partial Derivatives
10. Let f(xß yß z) œ x$ y$ z$ xyz Ê ™ f œ a3x# yzb i a3y# xzb j a3z# xyb k Ê ™ f(0ß 1ß 1) œ i 3j 3k $
Ê the tangent plane is x 3y 3z œ 0; r œ Š t4 2‹ i ˆ 4t 3‰ j (cos (t 2)) k #
Ê rw œ Š 3t4 ‹ i ˆ t4# ‰ j (sin (t 2)) k ; x œ 0, y œ 1, z œ 1 Ê t œ 2 Ê rw (2) œ 3i j . Since rw (2) † ™ f œ 0 Ê r is parallel to the plane, and r(2) œ i k Ê r is contained in the plane. 11.
`z `x
œ 3x# 9y œ 0 and
`z `y
œ 3y# 9x œ 0 Ê y œ
" 3
#
x# and 3 ˆ "3 x# ‰ 9x œ 0 Ê
" 3
x% 9x œ 0
Ê x ax$ 27b œ 0 Ê x œ 0 or x œ 3. Now x œ 0 Ê y œ 0 or (!ß 0) and x œ 3 Ê y œ 3 or (3ß 3). Next ` #z ` x#
œ 6x,
` #z ` y#
œ 6y, and
and for (3ß 3),
` #z ` #z ` x# ` y#
` #z ` x` y #
` #z ` #z ` x# ` y#
œ 9. For (!ß 0), #
` #z ` x#
Š ``x`zy ‹ œ 243 0 and
#
#
Š ``x`zy ‹ œ 81 Ê no extremum (a saddle point),
œ 18 0 Ê a local minimum.
12. f(xß y) œ 6xyeÐ2x3yÑ Ê fx (xß y) œ 6y(1 2x)eÐ2x3yÑ œ 0 and fy (xß y) œ 6x(1 3y)eÐ2x3yÑ œ 0 Ê x œ 0 and y œ 0, or x œ "# and y œ 3" . The value f(0ß 0) œ 0 is on the boundary, and f ˆ "# ß "3 ‰ œ e"2 . On the positive y-axis,
f(0ß y) œ 0, and on the positive x-axis, f(xß 0) œ 0. As x Ä _ or y Ä _ we see that f(xß y) Ä 0. Thus the absolute maximum of f in the closed first quadrant is e"2 at the point ˆ #" ß 3" ‰ .
13. Let f(xß yß z) œ P! (x! ß y! ß y! ) is
y# x# a# b# !‰ ˆ 2x a# x
z# c# 1 !‰ ˆ 2y b# y
Ê ™fœ ˆ 2zc#! ‰ z
2y 2x a# i b# j # 2y#! ! œ 2x a# b#
#
2z c# k Ê an equation of the plane tangent 2z#! ˆ x! ‰ ˆ y! ‰ ˆ z! ‰ c# œ 2 or a# x b# y c# z œ 1.
#
at the point
#
The intercepts of the plane are Š xa! ß 0ß 0‹ , Š0ß by! ß 0‹ and Š!ß !ß zc! ‹ . The volume of the tetrahedron formed by the #
#
#
plane and the coordinate planes is V œ ˆ "3 ‰ ˆ #" ‰ Š xa! ‹ Š by! ‹ Š cz! ‹ Ê we need to maximize V(xß yß z) œ subject to the constraint f(xß yß z) œ #
" and ’ (abc) 6 “ Š xyz# ‹ œ
2z c#
x# a#
y# b#
#
z# c#
" œ 1. Thus, ’ (abc) 6 “ Š x# yz ‹ œ
2x a#
(abc)# 6
#
" -, ’ (abc) 6 “ Š xy# z ‹ œ
(xyz)"
2y b#
-,
-. Multiply the first equation by a# yz, the second by b# xz, and the third by c# xy. Then equate
the first and second Ê a# y# œ b# x# Ê y œ substitute into f(xß yß z) œ 0 Ê x œ
a È3
b a
x, x 0; equate the first and third Ê a# z# œ c# x# Ê z œ ca x, x 0;
Ê yœ
Ê zœ
b È3
c È3
Ê Vœ
È3 #
abc.
14. 2(x u) œ -, 2(y v) œ -, 2(x u) œ ., and 2(y v) œ 2.v Ê x u œ v y, x u œ .# , and y v œ .v Ê x u œ .v œ .# Ê v œ
" #
or . œ 0.
CASE 1: . œ 0 Ê x œ u, y œ v, and - œ 0; then y œ x 1 Ê v œ u 1 and v# œ u Ê v œ v# 1 1 „ È1 4 Ê # " " " " # v œ # and u œ v Ê u œ 4 ; x 4 œ # Ê y œ 78 . Then f ˆ 8" ß 87 ß "4 ß "# ‰ œ ˆ 8"
Ê v# v 1 œ 0 Ê v œ
CASE 2:
no real solution. " 4 œ # 2 ˆ 38 ‰
y and y œ x 1 Ê x # # "4 ‰ ˆ 78 #" ‰ œ
Ê 2x œ 4" Ê x œ 8" Ê the minimum distance is 38 È2.
x
" #
(Notice that f has no maximum value.) 15. Let (x! ß y! ) be any point in R. We must show lim
Ðhß kÑ Ä Ð0ß 0Ñ
lim
Ðxß yÑ Ä Ðx! ß y! Ñ
f(xß y) œ f(x! ß y! ) or, equivalently that
kf(x! hß y! k) f(x! ß y! )k œ 0. Consider f(x! hß y! k) f(x! ß y! )
œ [f(x! hß y! k) f(x! ß y! k)] [f(x! ß y! k) f(x! ß y! )]. Let F(x) œ f(xß y! k) and apply the Mean Value Theorem: there exists 0 with x! 0 x! h such that Fw (0 )h œ F(x! h) F(x! ) Ê hfx (0ß y! k) œ f(x! hß y! k) f(x! ß y! k). Similarly, k fy (x! ß () œ f(x! ß y! k) f(x! ß y! ) for some ( with y! ( y! k. Then kf(x! hß y! k) f(x! ß y! )k Ÿ khfx (0ß y! k)k kkfy (x! ß ()k . If M, N are positive real numbers such that kfx k Ÿ M and kfy k Ÿ N for all (xß y) in the xy-plane, then kf(x! hß y! k) f(x! ß y! )k Ÿ M khk N kkk . As (hß k) Ä 0, kf(x! hß y! k) f(x! ß y! )k Ä 0 Ê lim kf(x! hß y! k) f(x! ß y! )k Ðhß kÑ Ä Ð0ß 0Ñ
œ 0 Ê f is continuous at (x! ß y! ).
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Chapter 14 Additional and Advanced Exercises 16. At extreme values, ™ f and v œ
dr dt
df dt
are orthogonal because
œ ™f†
879
œ 0 by the First Derivative Theorem for
dr dt
Local Extreme Values. 17.
`f `x
œ 0 Ê f(xß y) œ h(y) is a function of y only. Also,
Moreover,
`f `y
œ
`g `x
`g `y
œ
`f `x
œ 0 Ê g(xß y) œ k(x) is a function of x only.
Ê hw (y) œ kw (x) for all x and y. This can happen only if hw (y) œ kw (x) œ c is a constant.
Integration gives h(y) œ cy c" and k(x) œ cx c# , where c" and c# are constants. Therefore f(xß y) œ cy c" and g(xß y) œ cx c# . Then f(1ß 2) œ g(1ß 2) œ 5 Ê 5 œ 2c c" œ c c# , and f(0ß 0) œ 4 Ê c" œ 4 Ê c œ Ê c# œ
9 #
. Thus, f(xß y) œ
" #
y 4 and g(xß y) œ
" #
" #
x #9 .
18. Let g(xß y) œ Du f(xß y) œ fx (xß y)a fy (xß y)b. Then Du g(xß y) œ gx (xß y)a gy (xß y)b œ fxx (xß y)a# fyx (xß y)ab fxy (xß y)ba fyy (xß y)b# œ fxx (xß y)a# 2fxy (xß y)ab fyy (xß y)b# . 19. Since the particle is heat-seeking, at each point (xß y) it moves in the direction of maximal temperature increase, that is in the direction of ™ T(xß y) œ aec2y sin xb i a2ec2y cos xb j . Since ™ T(xß y) is parallel to 2ec2y cos x ec2y sin x œ È œ 2 ln #2
the particle's velocity vector, it is tangent to the path y œ f(x) of the particle Ê f w (x) œ
2 cot x.
Integration gives f(x) œ 2 ln ksin xk C and f ˆ 14 ‰ œ 0 Ê 0 œ 2 ln ¸sin 14 ¸ C Ê C
œ ln Š È22 ‹
#
œ ln 2. Therefore, the path of the particle is the graph of y œ 2 ln ksin xk ln 2. 20. The line of travel is x œ t, y œ t, z œ 30 5t, and the bullet hits the surface z œ 2x# 3y# when 30 5t œ 2t# 3t# Ê t# t 6 œ 0 Ê (t 3)(t 2) œ 0 Ê t œ 2 (since t 0). Thus the bullet hits the surface at the point (2ß 2ß 20). Now, the vector 4xi 6yj k is normal to the surface at any (xß yß z), so that n œ 8i 12j k is normal to the surface at (2ß 2ß 20). If v œ i j 5k , then the velocity of the particle †25 ‰ after the ricochet is w œ v 2 projn v œ v Š 2knvk†#n ‹ n œ v ˆ 2209 n œ (i j 5k) ˆ 400 209 i
œ 191 209 i
391 209
j
995 209
600 209
j
50 209
k‰
k.
21. (a) k is a vector normal to z œ 10 x# y# at the point (!ß 0ß 10). So directions tangential to S at (!ß 0ß 10) will be unit vectors u œ ai bj . Also, ™ T(xß yß z) œ (2xy 4) i ax# 2yz 14b j ay# 1b k Ê ™ T(!ß 0ß 10) œ 4i 14j k . We seek the unit vector u œ ai bj such that Du T(0ß 0ß 10) œ (4i 14j k) † (ai bj) œ (4i 14j) † (ai bj) is a maximum. The maximum will occur when ai bj has the same direction as 4i 14j , or u œ È"53 (2i 7j). (b) A vector normal to S at (1ß 1ß 8) is n œ 2i 2j k . Now, ™ T(1ß 1ß 8) œ 6i 31j 2k and we seek the unit vector u such that Du T(1ß 1ß 8) œ ™ T † u has its largest value. Now write ™ T œ v w , where v is parallel to ™ T and w is orthogonal to ™ T. Then Du T œ ™ T † u œ (v w) † u œ v † u w † u œ w † u. Thus Du T(1ß 1ß 8) is a maximum when u has the same direction as w . Now, w œ ™ T Š ™knTk#†n ‹ n 62 2 ‰ œ (6i 31j 2k) ˆ 124 (2i 2j k) œ ˆ6 41
œ 98 9 i
127 9
j
58 9
k Ê uœ
w kwk
152 ‰ i 9
ˆ31
152 ‰ j 9
ˆ2
76 ‰ 9 k
" œ È29,097 (98i 127j 58k).
22. Suppose the surface (boundary) of the mineral deposit is the graph of z œ f(xß y) (where the z-axis points up into the air). Then `` xf i `` yf j k is an outer normal to the mineral deposit at (xß y) and `` xf i `` yf j points in the direction of steepest ascent of the mineral deposit. This is in the direction of the vector
`f `x
i
`f `y
j at (0ß 0) (the location of the 1st borehole)
that the geologists should drill their fourth borehole. To approximate this vector we use the fact that (0ß 0ß 1000), (0ß 100ß 950), and (100ß !ß 1025) lie on the graph of z œ f(xß y). The plane containing these three points is a good â â j k â â i â â "00 50 â approximation to the tangent plane to z œ f(xß y) at the point (0ß 0ß 0). A normal to this plane is â 0 â â 25 â â "00 0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
880
Chapter 14 Partial Derivatives œ 2500i 5000j 10,000k, or i 2j 4k. So at (0ß 0) the vector
geologists should drill their fourth borehole in the direction of
" È5
`f `x
`f `y
i
j is approximately i 2j . Thus the
(i 2j) from the first borehole.
23. w œ ert sin 1x Ê wt œ rert sin 1x and wx œ 1ert cos 1x Ê wxx œ 1# ert sin 1x; wxx œ positive constant determined by the material of the rod Ê 1# ert sin 1x œ
" c#
" c#
wt , where c# is the
arert sin 1xb
# #
Ê ar c# 1# b ert sin 1x œ 0 Ê r œ c# 1# Ê w œ ec 1 t sin 1x 24. w œ ert sin kx Ê wt œ rert sin kx and wx œ kert cos kx Ê wxx œ k# ert sin kx; wxx œ Ê k# ert sin kx œ
" c#
" c#
wt # #
arert sin kxb Ê ar c# k# b ert sin kx œ 0 Ê r œ c# k# Ê w œ ec k t sin kx. # #
Now, w(Lß t) œ 0 Ê ec k t sin kL œ 0 Ê kL œ n1 for n an integer Ê k œ
n1 L
# # # # Ê w œ ec n 1 tÎL sin ˆ nL1 x‰ .
# # # # As t Ä _, w Ä 0 since ¸sin ˆ nL1 x‰¸ Ÿ 1 and ec n 1 tÎL Ä 0.
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
CHAPTER 15 MULTIPLE INTEGRALS 15.1 DOUBLE AND ITERATED INTEGRALS OVER RECTANGLES 1.
'12 '04 2xy dy dx œ '12 cx y# d 40 dx œ '12 16x dx œ c8 x# d 21
2.
'02 'c11 ax yb dy dx œ '02 xy 12 y# ‘ ""
3.
'c01 'c11 (x y 1) dx dy œ 'c01 ’ x2
4.
'01 '01 Š1 x 2 y ‹ dx dy œ '01 ’x x6
5.
'03 '02 a4 y# b dy dx œ '03 ’4y y3 “ # dx œ '03 163 dx œ 163 x‘30
6.
'03 'c02 ax# y 2xyb dy dx œ '03 ’ x 2y
7.
'01 '01 1 yx y dx dy œ '01 clnl1 x yld"0 dy œ '01 lnl1 yldy œ cy lnl1 yl y lnl1 yld 10 œ 2 ln 2 1
8.
'14 '04 ˆ 2x Èy‰ dx dy œ '14 41 x2 xÈy‘ !4 dy œ '14 ˆ4 4 y1/2 ‰dy œ 4y 38 y3/2 ‘41
9.
'0ln 2 '1ln 5 e2x y dy dx œ '0ln 2 ce2x y dln" 5 dx œ '0ln 2 a5e2x e2x 1 b dx œ 52 e2x "# e2x 1 ‘0ln 2
10.
'01 '12 x y ex dy dx œ '01 "# x y2 ex ‘2" dx œ '01 32 x ex dx œ 32 x ex 32 ex ‘10
11.
'c21 '01Î2 y sin x dx dy œ 'c21 cy cos xd10 Î2 dy œ 'c21 y dy œ "# y2 ‘2 1 œ 32
12.
'121 '01 asin x cos yb dx dy œ '121 ccos x x cos yd01 dy œ '121 a2 1 cos yb dy œ c2y 1 sin yd121
13.
' ' a6 y# 2 xbdA œ ' ' a6 y# 2 xb dy dx œ ' c2 y3 2 x yd20 dx œ ' a16 4 xb dx œ c16 x 2 x2 d10 œ 14 0 0 0 0
#
#
dx œ '0 2x dx œ c x# d 0 œ 4 2
"
yx x“
#
3
2
dy œ 'c1 (2y 2) dy œ cy# 2yd " œ 1 0
" "
x y# 2 “0 dy
œ '0 Š 65 1
$
!
# #
1
œ 24
!
xy# “
#
!
y# 2 ‹dy
œ ’ 56 y
œ
2 3
œ 16
dx œ '0 a4x 2x# b dx œ ’2x# 3
2
1
y3 6 “0
œ
1
3
2x$ 3 “!
œ0
œ
92 3
œ 32 a5 eb
3 2
œ 21
1
R
14.
'' R
Èx y2 dA
œ '0
4
'12 Èy x dy dx œ '04 ’ Èyx “2 dx œ '04 "# x1Î2 dx œ 31 x3Î2 ‘40 2
1
8 3
' ' x y cos y dA œ ' ' x y cos y dy dx œ ' cx y sin y x cos yd10 dx œ ' a2xb dx œ cx2 dc1 1 œ 0 c1 0 c1 c1 1
15.
œ
1
1
1
R
' ' y sinax yb dA œ ' ' y sinax yb dy dx œ ' cy cosax yb sinax ybd10 dx c1 0 c1 0
16.
1
0
R
œ 'c1 asinax 1b 1 cosax 1b sin xbdx œ ccosax 1b 1 sinax 1b cos xdc0 1 œ 4 0
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
882
Chapter 15 Multiple Integrals
' ' ex y dA œ ' ' ex y dy dx œ ' cex y dln0 2 dx œ ' aex ln 2 ex b dx œ cex ln 2 ex dln0 2 œ 0 0 0 0 ln 2
17.
ln 2
ln 2
ln 2
R
' ' x y ex y2 dA œ ' ' x y ex y2 dy dx œ ' ’ "# ex y2 “ dx œ ' ˆ "# ex "# ‰ dx œ "# ex "# x‘20 œ "# ae2 3b 0 0 0 0 2
18.
1
1
2
'' R
20.
'' R
2
0
R
19.
" #
x y3 x2 1 dA
œ '0
y x2 y2 1 dA
1
'02 xx y 1 dy dx œ '01 ’ 4axx y 1b “2 dx œ '01 x 4x 1 dx œ c2 lnlx2 1ld10 3
4
2
2
2
0
œ '0
1
œ 2 ln 2
'01 ax yby 1 dx dy œ '01 ctan1 ax ybd10 dy œ '01 tan1 y dy œ y tan1 y "# lnl1 y2 l‘10 2
21.
'12 '12
22.
'01 '01 y cos xy dx dy œ '01 csin xyd 1! dy œ '01 sin 1y dy œ 1" cos 1y‘ "! œ 1" (1 1) œ 12
1 xy
dy dx œ '1
2
" x
(ln 2 ln 1) dx œ (ln 2) '1
2
" x
œ
1 4
"# ln 2
dx œ (ln 2)#
" " 23. V œ ' ' fax, yb dA œ 'c1 'c1 ax2 y2 b dy dx œ 'c1 x2 y 31 y3 ‘ 1 dx œ 'c1 ˆ2 x2 32 ‰ dx œ 32 x3 32 x‘ 1 œ 1
1
1
1
R
24. V œ ' ' fax, yb dA œ '0
2
R
œ
8 3
'02 a16 x2 y2 b dy dx œ '02 16 y x2 y 13 y3 ‘20 dx œ '02 ˆ 883 2 x2 ‰ dx œ 883 x 23 x3 ‘20
160 3
25Þ V œ ' ' fax, yb dA œ '0
'01 a2 x yb dy dx œ '01 2 y x y "# y2 ‘ "! dx œ '01 ˆ 32 x‰ dx œ 32 x "# x2 ‘ "! œ 1
26Þ V œ ' ' fax, yb dA œ '0
'02 y2 dy dx œ '04 ’ y4 “2 dx œ '04 1 dx œ cxd40 œ 4
1
R
4
R
27Þ V œ ' ' fax, yb dA œ '0
2
0
1Î2
R
'01Î4 2 sin x cos y dy dx œ '01Î2 c2 sin x sin yd01Î4 dx œ '01Î2 ŠÈ2 sin x‹ dx œ ’È2 cos x“1Î2 0
œ È2 28. V œ ' ' fax, yb dA œ '0
1
R
'02 a4 y2 b dy dx œ '01 4 y 13 y3 ‘20 dx œ '01 ˆ 163 ‰ dx œ 163 x‘ "! œ 163
15.2 DOUBLE INTEGRALS OVER GENERAL REGIONS 1.
2.
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 15.2 Double Integrals Over General Regions 3.
4.
5.
6.
7.
8.
9. (a)
'!# 'x8 dy dx 3
(b)
'!8 '0y
10. (a)
'!3 '02x dy dx
(b)
'!6 'y3Î2 dx dy
11. (a)
'!3 'x3x dy dx
(b)
'!9 'yÈÎ3y dx dy
12. (a)
'!# '1e dy dx
(b)
'1e 'ln2 y dx dy
13. (a)
'!9 '0
2
x
1Î3
dx dy
2
Èx
(b)
dy dx
'0 'y dx dy 3
9 2
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
883
884
Chapter 15 Multiple Integrals
14. (a)
'!1Î4 'tan1 x dy dx
(b)
15. (a)
'01 '0tan
16. (a)
dx dy
'!ln 3 'e1c dy dx x
'1Î3 'ln y dx dy 1
(b)
c1 y
ln 3
'!1 '01 dy dx '1e 'ln1 x dy dx '01 '0e dx dy y
(b)
17. (a) (b)
18. (a)
'!1 'x3 2x dy dx
'01 '0y dx dy '13 '0a3 ybÎ2 dx dy
'21 'xx 2 dy dx 2
'0 'Èy dx dy '13 'yÈy2 dx dy 1
(b)
19.
Èy
'01 '0x (x sin y) dy dx œ '01 c x cos yd x! dx 1 1 œ '0 (x x cos x) dx œ ’ x2 (cos x x sin x)“ #
œ
1# #
!
2
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 15.2 Double Integrals Over General Regions 20.
'01 '0sin x y dy dx œ '01 ’ y2 “ sin x dx œ '01 "# sin# x dx #
!
œ
21.
" 4
'01 (1 cos 2x) dx œ "4 x "2 sin 2x‘ !1 œ 14
'1ln 8 '0ln yexby dx dy œ '1ln 8 cexbyd !ln y dy œ '1ln 8 ayey eyb dy œ c(y 1)ey ey d 1ln 8 œ 8(ln 8 1) 8 e œ 8 ln 8 16 e
'12 'yy
#
22.
dx dy œ '1 ay# yb dy œ ’ y3 2
$
œ ˆ 83 2‰ ˆ "3 "# ‰ œ
7 3
œ
3 #
5 6
'01 '0y 3y$ exy dx dy œ '01 c3y# exy d 0y #
23.
# y# # “"
#
dy
œ '0 Š3y# ey 3y# ‹ dy œ ’ey y$ “ œ e 2 1
$
"
$
!
24.
Èx
'14 '0 œ
3 #
3 #
eyÎÈx dy dx œ
'14 32 Èx eyÎÈx ‘ 0Èx dx
% (e 1) '1 Èx dx œ 23 (e 1) ˆ 32 ‰ x$Î# ‘ " œ 7(e 1) 4
25.
'12 'x2x
26.
'01 '01cx ax# y# b dy dx œ '01 ’x# y y3 “ "
x y
dy dx œ '1 cx ln yd x2x dx œ (ln 2) '1 x dx œ 2
2
$
x
0
$
œ ’ x3 27.
x% 4
" (1x)% 1# “ !
œ ˆ "3
" 4
#
œ '0 Š "# u 1
u# #
vÈ u “
ln 2
dx œ '0 ’x# (1 x) 1
0‰ ˆ0 0
'01 '01cu ˆv Èu‰ dv du œ '01 ’ v2
3 #
"
u
0
u"Î# u$Î# ‹ du œ ’ u2
" ‰ 1#
œ
(1x)$ 3 “
dx œ '0 ’x# x$ 1
(1x)$ 3 “
dx
" 6
du œ '0 ’ 12u# u Èu(1 u)“ du 1
u# #
u$ 6
#
"
32 u$Î# 25 u&Î# “ œ !
" #
" #
" 6
2 3
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
2 5
œ #"
2 5
" œ 10
885
886 28.
Chapter 15 Multiple Integrals
'12 '0ln t es ln t ds dt œ '12 ces ln td 0ln t dt œ '12 (t ln t ln t) dt œ ’ t2
#
œ (2 ln 2 1 2 ln 2 2) ˆ "4 1‰ œ 29.
" 4
ln t
t# 4
t ln t t“
# "
'c02 'vcv 2 dp dv œ 2'c02 cpd vv dv œ 2'c02 2v dv œ 2 cv# d c2 œ 8 0
30.
È1cs
'01 '0
#
È1cs
8t dt ds œ '0 c4t# d 0 1
œ '0 4 a1 s# b ds œ 4 ’s 1
31.
#
ds
" s$ 3 “!
œ
8 3
'c11ÎÎ33 '0sec t 3 cos t du dt œ ' 11ÎÎ33 c(3 cos t)ud 0sec t 1Î3
œ 'c1Î3 3 dt œ 21
32.
'03Î2 '14 2u 4 v 2u dv du œ '03Î2 2u v 4 ‘ 14 2u du 3Î2 $Î2 œ '0 a3 2ub du œ c3u u# d ! œ 92 #
33.
'24 '0Ð4
y)Î2
34.
' 02 '0x2 dy dx
dx dy
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 15.2 Double Integrals Over General Regions 35.
'01 'xx dy dx
36.
'01 '1cy1cydx dy
37.
'1e 'ln1ydx dy
38.
'12 '0ln x dy dx
39.
'09 '0
40.
'04 '0
#
È
1 2
È9cy
È4cx
16x dx dy
y dy dx
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
887
888
Chapter 15 Multiple Integrals È1cx
41.
'c11 '0
42.
'c22 '0
43.
'01 'ee x y dx dy
44.
'01Î2 '0sin
45.
'1e 'ln3 x ax ybdy dx
46.
'01Î3 'tan 3x Èx y dy dx
È4cy
#
3y dy dx
#
6x dx dy
y
c1 y
x y2 dx dy
3
È
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 15.2 Double Integrals Over General Regions 47.
48.
'01 'x1 siny y dy dx œ '01 '0y siny y dx dy œ '01 sin y dy œ 2
'02 'x2 2y# sin xy dy dx œ '02 '0y2y# sin xy dx dy 2 2 œ '0 c2y cos xyd 0y dy œ '0 a2y cos y# 2yb dy #
œ c sin y# y# d ! œ 4 sin 4
49.
'01 'y1 x# exy dx dy œ '01 '0x x# exy dy dx œ '01 cxexyd 0x dx œ '0 axex xb dx œ ’ "2 ex 1
È4cy
'02 '04cx 4xey dy dx œ '04 '0 #
50.
2y
œ '0 ’ #x(4ey) “ 4
51.
'02
# 2y
Èln 3 Èln 3
'y/2
Èln 3
œ '0
52.
" x# # “!
#
#
È4cy
0
dy œ '0
4 2y e
Èln 3
ex dx dy œ '0 #
#
#
Èln 3
$
dy dx œ '0
1
'03y
#
e2 #
dx dy 2y
%
dy œ ’ e4 “ œ
#
2xex dx œ cex d 0
'03 'È1xÎ3 ey
xe2y 4 y
œ
!
'02x ex
#
e) " 4
dy dx
œ eln 3 1 œ 2
$
ey dx dy
œ '0 3y# ey dy œ cey d ! œ e 1 1
53.
$
$
"
'01Î16 'y1Î2 cos a161x& b dx dy œ '01Î2 '0x "Î%
%
cos a161x& b dy dx
161x b œ '0 x% cos a161x& b dx œ ’ sin a80 “ 1 1Î2
&
"Î# !
œ
" 801
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
889
890 54.
Chapter 15 Multiple Integrals
'08 'È2x $
œ '0
2
55.
dy dx œ '0
2
"
y % 1 y$ y % 1
dy œ
" 4
'0y y "1 dx dy $
%
#
cln ay% 1bd ! œ
ln 17 4
' ' ay 2x# b dA R
xb1
œ 'c1 'cxc1 ay 2x# b dy dx '0 0
1
'x1cc1x ay 2x# b dy dx
x " 1x œ 'c1 "2 y# 2x# y‘ x1 dx '0 2" y# 2x# y‘ x1 dx 0
1
œ 'c1 "# (x 1)# 2x# (x 1) "# (x 1)# 2x# (x 1)‘dx 0
'0 "# (1 x)# 2x# (1 x) "# (x 1)# 2x# (x 1)‘ dx 1
œ 4 'c1 ax$ x# b dx 4 '0 ax$ x# b dx 0
1
%
œ 4 ’ x4
56.
0
x$ 3 “ c1
" x$ 3 “!
%
4 ’ x4
%
œ 4 ’ (41)
(1)$ 3 “
3 4 ˆ 4" 3" ‰ œ 8 ˆ 12
4 ‰ 12
8 œ 12 œ 32
' ' xy dA œ ' ' xy dy dx ' ' xy dy dx 0 x 2Î3 x 2Î3
R
2x
2Î3
1
2x 2 œ '0 "2 xy# ‘ x dx '2Î3 2" xy# ‘ x 1
x
2 x
dx
œ '0 ˆ2x$ "# x$ ‰ dx '2Î3 "# x(2 x)# "# x$ ‘ dx 2Î3
1
œ '0
2Î3
3 #
x$ dx '2Î3 a2x x# b dx 1
2Î3 " 2‰ 8 ‰‘ ‰ ˆ 4 ˆ 2 ‰ ˆ 27 œ 38 x% ‘ 0 x# 23 x$ ‘ #Î$ œ ˆ 38 ‰ ˆ 16 œ 81 1 3 9 3
57. V œ '0
1
'x2cx ax# y# b dy dx œ '01 ’x# y y3 “ 2cx dx œ '01 ’2x# 7x3 $
$
x
œ ˆ 23
7 12
2cx#
58. V œ 'c2 'x 1
œ ˆ 23
" 5
" ‰ 12
ˆ0 0
4cx#
1
œ
x# dy dx œ 'c2 cx# yd x 32 5
16 ‰ 4
(2x)$ 3 “
È 4 cx
40 œ ˆ 60
2
7x% 12
13 81 " (2x)% 12 “ !
12 60
15 ‰ 60
ˆ 320 60
384 60
240 ‰ 60
œ
189 60
œ
63 20
4cx (x 4) dy dx œ 'c4 cxy 4yd 3x dx œ 'c4 cx a4 x# b 4 a4 x# b 3x# 12xd dx 1
1
#
#
(3 y) dy dx œ '0 ’3y 2
œ ’ 32 xÈ4 x# 6 sin" ˆ x# ‰ 2x 61. V œ '0
$
œ
"
"
'0
16 ‰ 81
dx œ ’ 2x3
1
1
2
ˆ 36 81
dx œ 'c2 a2x# x% x$ b dx œ 23 x$ 15 x& 14 x% ‘ #
œ 'c4 ax$ 7x# 8x 16b dx œ 41 x% 37 x$ 4x# 16x‘ % œ ˆ 4"
60. V œ '0
27 81
4 3
2cx#
1
4" ‰ ˆ 16 3
59. V œ 'c4 '3x
16 ‰ 12
6 81
È 4c x
y# 2 “0
# x$ 6 “!
#
7 3
‰ 12‰ ˆ 64 3 64 œ
dx œ '0 ’3È4 x# Š 4#x ‹“ dx 2
œ 6 ˆ 1# ‰ 4
#
8 6
œ 31
16 6
œ
918 3
'03 a4 y# b dx dy œ '02 c4x y# xd $! dy œ '02 a12 3y# b dy œ c12y y$ d !# œ 24 8 œ 16
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
157 3
" 4
œ
625 12
Section 15.2 Double Integrals Over General Regions 62. V œ '0
2
'04cx
#
2
œ 8x 43 x$ 63. V œ '0
2
4cx#
a4 x# yb dy dx œ '0 ’a4 x# b y " 10
#
x& ‘ ! œ 16
32 3
32 10
œ
y# 2 “!
48032096 30
œ
" #
a4 x# b dx œ '0 Š8 4x# 2
#
!
xb1
1
1Îx
2
66. V œ 4 '0
1Î3
'x1cc1x (3 3x) dy dx œ 6 'c01 a1 x# b dx 6 '01 (1 x)# dx œ 4 2 œ 6
2
2
" x
ˆ1 x" ‰‘dx œ 2 '1 ˆ1 x" ‰ dx œ 2 cx ln xd #" 2
'0sec x a1 y# b dy dx œ 4 '01Î3 ’y y3 “ sec x dx œ 4 '01Î3 Šsec x sec3 x ‹ dx $
$
0
1Î$
c7 ln ksec x tan xk sec x tan xd !
œ
’7 ln Š2 È3‹ 2È3“
2 3
67.
68.
'1_ 'ec1 x"y dy dx œ '1_ ’ lnx y “ " x
$
$
ec x
_
dx œ '1 ˆ x$x ‰ dx œ lim
bÄ_
1/ ˆ1cx ‰ È1cx 1 70. 'c1 'c1/È1cx (2y 1) dy dx œ 'c1 cy# ydº 1
1/
# 1Î#
#
#
c1/ a1c
x# b1Î#
œ 4 lim c csin" b 0d œ 21 bÄ1 71.
dx
128 15
65. V œ '1 'c1Îx (x 1) dy dx œ '1 cxy yd 1Î1xÎx dx œ '1 1 œ 2(1 ln 2)
69.
x% #‹
%
0
2 3
2
# 2 x '02cx a12 3y# b dy dx œ '02 c12y y$ d # dx œ '0 c24 12x (2 x)$ d dx œ ’24x 6x# (24x) “ œ 20 !
64. V œ 'c1 'cxc1 (3 3x) dy dx '0
œ
dx œ '0
_ _ 'c_ ' _ ax 1b"ay 1b -dx dy œ 2 '0_ Š y 21 ‹ Š #
#
#
lim
bÄ_
dx œ 'c1 È 2
x" ‘ b œ lim 1
1
1 x #
bÄ_
ˆ "b 1‰ œ 1
dx œ 4 lim c csin" xd ! bÄ1 b
tan" b tan" 0‹ dy œ 21 lim
bÄ_
'0b y "1 dy #
œ 21 Š lim tan" b tan" 0‹ œ (21) ˆ 1# ‰ œ 1# bÄ_
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
891
892 72.
Chapter 15 Multiple Integrals
'0_ '0_ xecÐx
2yÑ
_
_
cxex ex d b0 dy œ '0 e2y lim
bÄ_
œ '0 ec2y dy œ 73.
_
dx dy œ '0 e2y lim " # b lim Ä_
abeb eb 1b dy
bÄ_
aec2b 1b œ
" #
' ' f(xß y) dA ¸ "4 f ˆ "# ß 0‰ 8" f(0ß 0) 8" f ˆ "4 ß 0‰ œ "4 ˆ "# ‰ 8" ˆ0 "4 ‰ œ 323 R
74.
' ' f(xß y) dA ¸ "4 ’f ˆ 47 ß 114 ‰ f ˆ 94 ß 114 ‰ f ˆ 74 ß 134 ‰ f ˆ 94 ß 134 ‰“ œ R
75. The ray ) œ
1 6
" 16
(29 31 33 35) œ
128 16
œ8
meets the circle x# y# œ 4 at the point ŠÈ3ß 1‹ Ê the ray is represented by the line y œ
È
È
È
$Î# 3 4cx 3 x# b ' ' f(xß y) dA œ ' ' È È4x# dy dx œ ' ’a4 x# b Èx3 È4 x# “ dx œ ”4x x3$ a4È 0 xÎ 3 0 3 3 • #
R
76.
'2_ '02 ax xb "(y1) #
bÄ_ bÄ_
77. V œ '0
1
0
cln (x 1) ln xd 2b œ 6 lim
lim
bÄ_
_
dx œ 6 '2
bÄ_
dx x(x1)
[ln (b 1) ln b ln 1 ln 2]
$
x
7x 3
œ ˆ 23
" ‰ 1#
7 12
$
(2x)$ 3 “
$
dx œ ’ 2x3
ˆ0 0
16 ‰ 12
œ
œ '0
'2
œ
2 tan
ˆ1 1" ‰ y 1y# dy 1 1 ˆ 21 ‰ ln 5 "
21
ˆ2 1 1 y # "
"
21 2 tan
y‰
21
2
%
7x 12
" (2x)% 12 “ !
4 3
'02 atan" 1x tan" xb dx œ '02 'x1x 1"y
œ 2 tan
3 ‰ x # x
'x2cx ax# y# b dy dx œ '01 ’x# y y3 “ 2cx dx
œ '0 ’2x#
2
2
"Î$
0
ln ˆ1 "b ‰ ln 2“ œ 6 ln 2
1
78.
_
1) ' ˆ x#3x dy dx œ '2 ’ 3(y ax# xb “ dx œ 2
'2b ˆ x" 1 "x ‰ dx œ 6
œ 6 lim
œ 6 ’ lim
_
#Î$
È3
dy dx œ '0
2
#
'yyÎ1
" 1y #
dx dy '2
21
# # " ‰ dy œ ˆ 12" y 1 cln a1 y bd ! 2 tan " 21
" 21
ln a1 41# b 2 tan" 2 #
ln a1 41 b
" #1
" #1
'y2Î1 1"y
#
dx dy 21
ln a1 y# b‘ 2
ln 5
ln 5 #
79. To maximize the integral, we want the domain to include all points where the integrand is positive and to exclude all points where the integrand is negative. These criteria are met by the points (xß y) such that 4 x# 2y# 0 or x# 2y# Ÿ 4, which is the ellipse x# 2y# œ 4 together with its interior. 80. To minimize the integral, we want the domain to include all points where the integrand is negative and to exclude all points where the integrand is positive. These criteria are met by the points (xß y) such that x# y# 9 Ÿ 0 or x# y# Ÿ 9, which is the closed disk of radius 3 centered at the origin. 81. No, it is not possible. By Fubini's theorem, the two orders of integration must give the same result.
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
x È3
œ
. Thus,
20È3 9
Section 15.2 Double Integrals Over General Regions 82. One way would be to partition R into two triangles with the line y œ 1. The integral of f over R could then be written as a sum of integrals that could be evaluated by integrating first with respect to x and then with respect to y:
' ' f(xß y) dA R
œ '0
1
'22ccÐ2yyÎ2Ñ f(xß y) dx dy '12 'y2c1ÐyÎ2Ñ f(xß y) dx dy.
Partitioning R with the line x œ 1 would let us write the integral of f over R as a sum of iterated integrals with order dy dx. 83.
' bb ' bb e
x# y#
dx dy œ '
b ' e b b
b
#
y#
e
x#
dx dy œ ' b e b
#
y#
Œ' b e b
x#
dx dy œ Œ' b e b
x#
dx Œ' b e b
y#
dy
#
# # # œ Œ'cb ecx dx œ Œ2 '0 ecx dx œ 4 Œ'0 ecx dx ; taking limits as b Ä _ gives the stated result.
b
84.
'01 '03 (yx1)
dy dx œ '0
3
#
œ
b
#Î$
" 3 b lim Ä 1c
'0
b
dy (y1)#Î$
'01 (yx1)
dx dy œ '0
3
#
#Î$
" 3
b
'b
3
lim
b Ä 1b
dy (y1)#Î$
œ
" (y1)#Î$
lim
b Ä 1c
$
"
’ x3 “ dy œ !
" 3
'03 (ydy1)
#Î$
(y 1)"Î$ ‘ b lim (y 1)"Î$ ‘ 3 0 b b Ä 1b
3 3 œ ’ lim c (b 1)"Î$ (1)"Î$ “ ’ lim b (b 1)"Î$ (2)"Î$ “ œ (0 1) Š0 È 2‹ œ 1 È 2 bÄ1 bÄ1
85-88. Example CAS commands: Maple: f := (x,y) -> 1/x/y; q1 := Int( Int( f(x,y), y=1..x ), x=1..3 ); evalf( q1 ); value( q1 ); evalf( value(q1) ); 89-94. Example CAS commands: Maple: f := (x,y) -> exp(x^2); c,d := 0,1; g1 := y ->2*y; g2 := y -> 4; q5 := Int( Int( f(x,y), x=g1(y)..g2(y) ), y=c..d ); value( q5 ); plot3d( 0, x=g1(y)..g2(y), y=c..d, color=pink, style=patchnogrid, axes=boxed, orientation=[-90,0], scaling=constrained, title="#89 (Section 15.2)" ); r5 := Int( Int( f(x,y), y=0..x/2 ), x=0..2 ) + Int( Int( f(x,y), y=0..1 ), x=2..4 ); value( r5); value( q5-r5 ); 85-94. Example CAS commands: Mathematica: (functions and bounds will vary) You can integrate using the built-in integral signs or with the command Integrate. In the Integrate command, the integration begins with the variable on the right. (In this case, y going from 1 to x).
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
893
894
Chapter 15 Multiple Integrals
Clear[x, y, f] f[x_, y_]:= 1 / (x y) Integrate[f[x, y], {x, 1, 3}, {y, 1, x}] To reverse the order of integration, it is best to first plot the region over which the integration extends. This can be done with ImplicitPlot and all bounds involving both x and y can be plotted. A graphics package must be loaded. Remember to use the double equal sign for the equations of the bounding curves. Clear[x, y, f] ˆ "# ‰ œ '0 t"Î# et dt œ '0 ay# b 24. Q œ '0
" #
#
È1 # ‹
c) cos )d #!1 œ
'cÈhh 'cÈhhccxx 'xhby
œ È1, where y œ Èt
21kR$ 3
#
#
#
#
dz dy dx
ah r# b r dr d) œ '0 ’ hr2 r4 “ 21
#
%
Èh !
d) œ '0
21
h# 4
d) œ
h# 1 #
.
Since the top of the bowl has area 101, then we calibrate the bowl by comparing it to a right circular cylinder whose cross sectional area is 101 from z œ 0 to z œ 10. If such a cylinder contains to a depth w then we have 101w œ rain, w œ 3 and h œ È60.
h# 1 #
Ê wœ
h# 20
h# 1 #
cubic inches of water . So for 1 inch of rain, w œ 1 and h œ È20; for 3 inches of
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Chapter 15 Additional and Advanced Exercises 26. (a) An equation for the satellite dish in standard position is z œ "# x# "# y# . Since the axis is tilted 30°, a unit vector v œ 0i aj bk normal to the plane of the È3 # È #3
water level satisfies b œ v † k œ cos ˆ 16 ‰ œ Ê a œ È1 b# œ "# Ê v œ "# j Ê "# (y 1) Ê zœ
" È3
È3 #
y Š "#
k
ˆz "# ‰ œ 0 " È3 ‹
is an equation of the plane of the water level. Therefore
' Èx byby c È dz dy dx, where R is the interior of the ellipse
the volume of water is V œ ' '
1
1 2
3
#
1 2
R
1 2
1
3
#
È 3 Ê 3 4 Š È 3 1‹ 2
x# y#
È
2
and " œ
y1
2 È3
Ê 43 3
œ 0. When x œ 0, then y œ ! or y œ " , where ! œ
2 È3
Ê Vœ
3
#
(b) x œ 0 Ê z œ
" #
y# and
!
œ y; y œ 1 Ê
dz dy
"Î#
Š yb1c È3 cy ‹
' 'c "
4 Š È 1‹ 2
2 3
#
2
3
"Î#
Š yb1c È3 cy# ‹ 2 3
2
yb
' Èb 1
1 2
x#
1 2
1 2
4
2
#
c È3 1
1 dz dx dy
y#
œ 1 Ê the tangent line has slope 1 or a 45° slant
dz dy
Ê at 45° and thereafter, the dish will not hold water. 27. The cylinder is given by x# y# œ 1 from z œ 1 to _ Ê œ '0
21
_
'0 '1 1
z ar# z# b&Î#
'0 '0 ' 21
dz r dr d) œ a lim Ä_
1
' ' ' z ar# z# b&Î# dV D
a
rz 1 ar# z# b&Î#
dz dr d)
œ a lim Ä_
'021 '01 ’ˆ "3 ‰
œ a lim Ä_
'021 ’ 3" ar# a# b"Î# 3" ar# 1b"Î# “ " d) œ a lim ' 21 ’ 3" a1 a# b"Î# 3" ˆ2"Î# ‰ 3" aa# b"Î# 3" “ d) Ä_ 0
œ a lim 21 ’ 3" a1 a# b Ä_
a
r “ ar# z# b$Î# 1
"Î#
3" Š
'021 '01 ’ˆ 3" ‰
dr d) œ a lim Ä_
È2 # ‹
ˆ "3 ‰
r ar# a# b$Î#
!
r “ ar# 1b$Î#
dr d)
È2 # “.
3" ˆ "a ‰ 3" “ œ 21 ’ 3" ˆ 3" ‰
28. Let's see? The length of the "unit" line segment is: L œ 2'0 dx œ 2. 1
The area of the unit circle is: A œ 4'0
1
È1 c x
'0
The volume of the unit sphere is: V œ 8'0
1
2
dy dx œ 1.
È1 c x
'0
2
È1 c x c y
'0
2
2
dz dy dx œ 43 1.
Therefore, the hypervolume of the unit 4-sphere should be: Vhyper œ 16'0
1
È1cx
'0
2
È1cx cy
'0
2
2
È1cx cy cz
'0
2
2
2
dw dz dy dx.
Mathematica is able to handle this integral, but we'll use the brute force approach. Vhyper œ 16'0
1
È1cx
œ 16'0
'0
œ 16'0
'0
œ 16'0
'0
1
1
1
È1cx È1cx
È1cx
'0
2
2
2
2
È1cx cy
'0
È1cx cy
'0
2
2
È1cx cy cz
'0
2
2
2
dw dz dy dx œ 16'0
1
2
z2 È 1 x2 y2 É 1 1 c x2 c y2
dz dy dx œ –
È1cx
'0
dz œ
a1 x2 y2 b'1/2 È1 cos2 ) sin ) d) dy dx œ 16'0 0
1 4 a1
1
2
È1cx cy
'0
2
2
È 1 x 2 y 2 z2
z È1 x2 y2 œ cos ) È1 x2 y2 sin
È1cx
'0
2
) d)
—
a1 x2 y2 b'1/2 sin2 ) d) dy dx 0
1
1 x3 $
‘ dx œ 83 1' a1 x2 b3/2 dx œ ” 0 1
0 x œ cos ) œ 83 1'1/2 sin4 ) d) dx œ sin ) d) •
2 ) ‰2 œ 83 1'1/2 ˆ 1 cos d) œ 23 1'1/2 a1 2 cos 2) cos2 2)bd) œ 23 1'1/2 ˆ #3 2 cos 2) 2 0
dz dy dx
3/2 x2 y2 b dy dx œ 41'0 ŠÈ1 x2 x2 È1 x2 3" a1 x2 b ‹ dx
œ 41'0 È1 x2 a1 x2 b 1
2
0
0
cos 4) ‰ d) 2
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
œ
12 2
937
938
Chapter 15 Multiple Integrals
NOTES:
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
CHAPTER 16 INTEGRATION IN VECTOR FIELDS 16.1 LINE INTEGRALS 1. r œ ti a" tbj Ê x œ t and y œ 1 t Ê y œ 1 x Ê (c) 2. r œ i j tk Ê x œ 1, y œ 1, and z œ t Ê (e) 3. r œ a2 cos tbi a2 sin tbj Ê x œ 2 cos t and y œ 2 sin t Ê x# y# œ 4 Ê (g) 4. r œ ti Ê x œ t, y œ 0, and z œ 0 Ê (a) 5. r œ ti tj tk Ê x œ t, y œ t, and z œ t Ê (d) 6. r œ tj a2 2tbk Ê y œ t and z œ 2 2t Ê z œ 2 2y Ê (b) 7. r œ at# 1b j 2tk Ê y œ t# 1 and z œ 2t Ê y œ
z# 4
1 Ê (f)
8. r œ a2 cos tbi a2 sin tbk Ê x œ 2 cos t and z œ 2 sin t Ê x# z# œ 4 Ê (h) 9. ratb œ ti a1 tbj , 0 Ÿ t Ÿ 1 Ê
œ i j Ê ¸ ddtr ¸ œ È2 j ; x œ t and y œ 1 t Ê x y œ t (" t) œ 1
dr dt
Ê 'C faxß yß zb ds œ '0 fatß 1 tß 0b ¸ ddtr ¸ dt œ '0 (1) ŠÈ2‹ dt œ ’È2 t“ œ È2 1
"
1
!
10. r(t) œ ti (1 t)j k , 0 Ÿ t Ÿ 1 Ê œ t (1 t) 1 2 œ 2t 2 Ê
dr dt
œ i j Ê ¸ ddtr ¸ œ È2; x œ t, y œ 1 t, and z œ 1 Ê x y z 2
'C f(xß yß z) ds œ '01 (2t 2) È2 dt œ È2 ct# 2td "! œ È2
11. r(t) œ 2ti tj (2 2t)k , 0 Ÿ t Ÿ 1 Ê
dr dt
œ 2i j 2k Ê ¸ ddtr ¸ œ È4 1 4 œ 3; xy y z
œ (2t)t t (2 2t) Ê 'C f(xß yß z) ds œ '0 a2t# t 2b 3 dt œ 3 23 t$ "# t# 2t‘ ! œ 3 ˆ 23 1
12. r(t) œ (4 cos t)i (4 sin t)j 3tk , 21 Ÿ t Ÿ 21 Ê Ê ¸ ddtr ¸ œ È16 sin# 1 œ c20td ## 1 œ 801
"
dr dt
dr dt
Ê ¸ ddtr ¸ œ È1 9 4 œ È14 ; x y z œ (1 t) (2 3t) (3 2t) œ 6 6t Ê
œ i 3 j 2k
'C f(xß yß z) ds
œ '0 (6 6t) È14 dt œ 6È14 ’t t2 “ œ Š6È14‹ ˆ "# ‰ œ 3È14 " !
14. r(t) œ ti tj tk , 1 Ÿ t Ÿ _ Ê
_
dr dt
13 #
'C f(xß yß z) ds œ 'c2211 (4)(5) dt
13. r(t) œ (i 2j 3k) t(i 3j 2k) œ (1 t)i (2 3t)j (3 2t)k , 0 Ÿ t Ÿ 1 Ê
#
2‰ œ
œ (4 sin t)i (4 cos t)j 3k
t 16 cos# t 9 œ 5; Èx# y# œ È16 cos# t 16 sin# t œ 4 Ê
1
" #
œ i j k Ê ¸ ddtr ¸ œ È3 ;
È3 x # y# z#
_ Ê 'C f(xß yß z) ds œ '1 Š 3t#3 ‹ È3 dt œ 1t ‘ " œ lim ˆ b" 1‰ œ 1
œ
È3 t# t# t#
œ
È3 3t#
È
bÄ_
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
940
Chapter 16 Integration in Vector Fields
15. C" : r(t) œ ti t# j , 0 Ÿ t Ÿ 1 Ê
œ i 2tj Ê ¸ ddtr ¸ œ È1 4t# ; x Èy z# œ t Èt# 0 œ t ktk œ 2t
dr dt
$Î# since t 0 Ê 'C f(xß yß z) ds œ '0 2tÈ1 4t# dt œ ’ "6 a" 4t# b “ œ "
1
!
"
C# : r(t) œ i j tk, 0 Ÿ t Ÿ 1 Ê
dr dt
1
"
#
"
5 6
#
16. C" : r(t) œ tk , 0 Ÿ t Ÿ 1 Ê
dr dt
(5)$Î#
" 6
" 6
œ
Š5È5 1‹ ;
œ k Ê ¸ ddtr ¸ œ 1; x Èy z# œ 1 È1 t# œ 2 t#
Ê 'C f(xß yß z) ds œ '0 a2 t# b (1) dt œ 2t "3 t$ ‘ ! œ 2
œ 'C f(xß yß z) ds 'C f(xß yß z) ds œ
" 6
È5
" 3
œ
5 3
; therefore 'C f(xß yß z) ds
3 #
œ k Ê ¸ ddtr ¸ œ 1; x Èy z# œ 0 È0 t# œ t#
Ê 'C f(xß yß z) ds œ '0 at# b (1) dt œ ’ t3 “ œ 3" ; 1
"
$
!
"
C# : r(t) œ tj k, 0 Ÿ t Ÿ 1 Ê
œ j Ê ¸ ddtr ¸ œ 1; x Èy z# œ 0 Èt 1 œ Èt 1
dr dt
" Ê 'C f(xß yß z) ds œ '0 ˆÈt 1‰ (1) dt œ 23 t$Î# t‘ ! œ 1
#
C$ : r(t) œ ti j k , 0 Ÿ t Ÿ 1 Ê
dr dt #
œ "6 17. r(t) œ ti tj tk , 0 a Ÿ t Ÿ b Ê Ê
" !
$
dr dt
1 œ 3" ;
œ i Ê ¸ ddtr ¸ œ 1; x Èy z# œ t È1 1 œ t
Ê 'C f(xß yß z) ds œ '0 (t)(1) dt œ ’ t2 “ œ 1
2 3
" #
Ê
'C f(xß yß z) ds œ 'C
"
œ i j k Ê ¸ ddtr ¸ œ È3 ;
f ds 'C f ds 'C f ds œ 3" ˆ 3" ‰ #
xyz x # y # z#
œ
'C f(xß yß z) ds œ 'ab ˆ 1t ‰ È3 dt œ ’È3 ln ktk “ b œ È3 ln ˆ ba ‰ , since 0 a Ÿ b
$
ttt t# t# t#
œ
" #
1 t
a
18. r(t) œ aa cos tb j aa sin tb k , 0 Ÿ t Ÿ 21 Ê
dr dt
œ (a sin t) j (a cos t) k Ê ¸ ddtr ¸ œ Èa# sin# t a# cos# t œ kak ;
21 1 kak sin t, 0 Ÿ t Ÿ 1 Èx# z# œ È0 a# sin# t œ œ Ê 'C f(xß yß z) ds œ '0 kak# sin t dt '1 kak# sin t dt kak sin t, 1 Ÿ t Ÿ 21
1
#1
œ ca# cos td ! ca# cos td 1 œ ca# (1) a# d ca# a# (1)d œ 4a# Ê 'C x ds œ '0 t
È5 2
4
È5 2 dt
È5 2
'04 t dt œ ’ È45 t2 “ 4 œ 4È5
19. (a) ratb œ ti "# tj , 0 Ÿ t Ÿ 4 Ê
dr dt
œ i "# j Ê ¸ ddtr ¸ œ
(b) ratb œ ti t j , 0 Ÿ t Ÿ 2 Ê
dr dt
œ i 2tj Ê ¸ ddtr ¸ œ È1 4t2 Ê 'C x ds œ '0 t È1 4t2 dt
2
3Î2 2
1 œ ’ 12 a1 4t2 b
“ œ !
œ
2
17È17 " 12
20. (a) ratb œ ti 4tj , 0 Ÿ t Ÿ 1 Ê
dr dt
œ i 4j Ê ¸ ddtr ¸ œ È17 Ê 'C Èx 2y ds œ '0 Èt 2a4tb È17 dt 1
œ È17'0 È9t dt œ 3È17'0 Èt dt œ ’2È17 t2Î3 “ œ 2È17 1
1
1
!
(b) C" : ratb œ ti , 0 Ÿ t Ÿ 1 Ê
'C Èx 2y ds œ 'C
1
œ i Ê ¸ ddtr ¸ œ 1; C2 : ratb œ i tj, 0 Ÿ t Ÿ 1 Ê
dr dt
C2
œ '0 Èt dt '0 È1 2t dt œ 1
2
21. ratb œ 4ti 3tj , 1 Ÿ t Ÿ 2 Ê
dr dt 2
16t œ 15'c1 t e16t dt œ ’ 15 “ 32 e 2
2
dr dt
œ j Ê ¸ ddtr ¸ œ 1
Èx 2y ds ' Èx 2y ds œ ' Èt 2a0b dt ' È1 2atb dt 1
2
c1
23 t2Î3 ‘ 1 !
2
0
0
2
’ 13 a1 2tb2Î3 “ œ !
2 3
È Š5 3 5
31 ‹ œ
5È 5 1 3
œ 4i 3j Ê ¸ ddtr ¸ œ 5 Ê 'C y ex ds œ 'c1 a3tb ea4tb † 5dt 2
64 œ 15 32 e
15 16 32 e
œ
15 16 32 ae
2
2
e64 b
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
!
Section 16.1 Line Integrals 22. ratb œ acos tbi asin tbj , 0 Ÿ t Ÿ 21 Ê
941
œ asin tbi acos tbj Ê ¸ ddtr ¸ œ Èsin2 t cos2 t œ 1 Ê 'C ax y 3b ds
dr dt
œ '0 acos t sin t 3b † 1 dt œ csin t cos t 3td 201 œ 61 21
23. ratb œ t2 i t3 j , 1 Ÿ t Ÿ 2 Ê œ '1
2
œ '1Î2
œ 2ti 3t2 j Ê ¸ ddtr ¸ œ Éa2tb2 a3t2 b2 œ tÈ4 9t2 Ê 'C
3Î2 1 a4 9t2 b “ œ † tÈ4 9t2 dt œ '1 t È4 9t2 dt œ ’ 27
ˆt2 ‰2
2
2
at3 b4Î3
ŸtŸ1Ê
1 2
dr dt
1
25. C" : ratb œ ti t2 j , 0 Ÿ t Ÿ 1 Ê Ê
dr dt
ds
œ 3t2 i 4t3 j Ê ¸ ddtr ¸ œ Éa3t2 b2 a4t3 b2 œ t2 È9 16t2 Ê 'C
1 a9 16t2 b † t2 È9 16t2 dt œ '1Î2 t È9 16t2 dt œ ’ 48
Èt4 t3
x2 y4Î3
80È10 13È13 27
1
24. ratb œ t3 i t4 j , 1
dr dt
3 Î2
1
“
1Î2
œ
Èy x
ds
125 13È13 48
œ i 2tj Ê ¸ ddtr ¸ œ È1 4t2 ; C2 : ratb œ a1 tbi a1 tbj, 0 Ÿ t Ÿ 1
dr dt
œ i j Ê ¸ ddtr ¸ œ È2 Ê 'C ˆx Èy‰ds œ 'C ˆx Èy‰ds 'C ˆx Èy‰ds 1
2
œ '0 Št Èt2 ‹È1 4t2 dt '0 Ša1 tb È1 t‹ È2dt œ '0 2tÈ1 4t2 dt '0 Š1 t È1 t‹ È2dt 1
1
œ ’ 16 a1 4t2 b
1
3 Î2 1
1
0
0
Î “ È2’t "# t2 23 a1 tb3 2 “ œ
26. C" : ratb œ ti , 0 Ÿ t Ÿ 1 Ê
5È 5 1 6
7È 2 6
1
œ
5È 5 7È 2 1 6
œ i Ê ¸ ddtr ¸ œ 1; C2 : ratb œ i tj, 0 Ÿ t Ÿ 1 Ê ddtr œ j Ê ¸ ddtr ¸ œ 1; C3 : ratb œ a1 tbi j, 0 Ÿ t Ÿ 1 Ê ddtr œ i Ê ¸ ddtr ¸ œ 1; C4 : ratb œ a1 tbj, 0 Ÿ t Ÿ 1 Ê ddtr œ j Ê ¸ ddtr ¸ œ 1; Ê 'C œ '0
1
1 x2 y2 1 ds dt t2 1
'0
œ ctan1 td 0 1
1
œ 'C
1 x2 y2 1 ds
1
dt t2 2
dr dt
'0
1
x# #
2
dt a1 tb2 2
1 t 1 È2 ’tan Š È2 ‹“
27. r(x) œ xi yj œ xi
'C
1 0
'0
1 x2 y2 1 ds
1
'C
œ '0 (2x)È1 x# dx œ ’ 23 a1 x# b 2
4
1 x2 y2 1 ds
1 0
ctan1 a1 tbd 0 œ 1
1 2
2 1 1 È2 tan Š È2 ‹
#
“ œ !
'C
dr ¸ œ i xj Ê ¸ dx œ È1 x# ; f(xß y) œ f Šxß x# ‹ œ
dr dx
$Î# #
1 x2 y2 1 ds
dt a1 tb2 1
1 1 t 1 È2 ’tan Š È2 ‹“
j, 0 Ÿ x Ÿ 2 Ê
3
2 3
ˆ5$Î# 1‰ œ
#
Š x# ‹
10È5 2 3
28. r(t) œ a1 tbi #1 a1 tb2 j, 0 Ÿ t Ÿ 1 Ê ¸ ddtr ¸ œ É1 a1 tb# ; f(xß y) œ f Ša1 tbß #1 a1 tb2 ‹ œ Ê
'C f ds œ '01 a1 tb
œ 0 ˆ "#
4 1 4 a1 tb #
É1 a1 tb
" ‰ #0
œ
œ 2x Ê 'C f ds
x$
É1 a1 tb# dt œ ' Ša1 tb 14 a1 tb4 ‹ dt œ ’ "# a1 tb2 0 1
a1 tb 14 a1 tb4 É1 a1 tb#
1 20 a1
tb5 “
" !
11 #0
29. r(t) œ (2 cos t) i (2 sin t) j , 0 Ÿ t Ÿ
1 #
Ê
dr dt
œ (2 sin t) i (2 cos t) j Ê ¸ ddtr ¸ œ 2; f(xß y) œ f(2 cos tß 2 sin t)
œ 2 cos t 2 sin t Ê 'C f ds œ '0 (2 cos t 2 sin t)(2) dt œ c4 sin t 4 cos td ! 1Î2
30. r(t) œ (2 sin t) i (2 cos t) j , 0 Ÿ t Ÿ œ 4 sin# t 2 cos t Ê
1Î#
1 4
Ê
dr dt
œ 4 (4) œ 8
œ (2 cos t) i (2 sin t) j Ê ¸ ddtr ¸ œ 2; f(xß y) œ f(2 sin tß 2 cos t)
'C f ds œ '01Î4 a4 sin# t 2 cos t b (2) dt œ c4t 2 sin 2t 4 sin td 01Î% œ 1 2Š1 È2‹
31. y œ x2 , 0 Ÿ x Ÿ 2 Ê ratb œ ti t2 j , 0 Ÿ t Ÿ 2 Ê
dr dt
œ i 2tj Ê ¸ ddtr ¸ œ È1 4t2 Ê A œ 'C fax, yb ds
3 Î2 œ 'C ˆx Èy‰ds œ '0 Št Èt2 ‹È1 4t2 dt œ '0 2tÈ1 4t2 dt œ ’ 16 a1 4t2 b “ œ 2
2
2 0
17È17 1 6
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
942
Chapter 16 Integration in Vector Fields
32. 2x 3y œ 6, 0 Ÿ x Ÿ 6 Ê ratb œ ti ˆ2 23 t‰j , 0 Ÿ t Ÿ 6 Ê œ 'C a4 3x 2ybds œ '0 ˆ4 3t 2ˆ2 23 t‰‰ 6
33. r(t) œ at# 1b j 2tk , 0 Ÿ t Ÿ 1 Ê
dr dt
È13 3
dt œ
È13 3
dr dt
È13 3
œ i 23 j Ê ¸ ddtr ¸ œ
Ê A œ 'C fax, yb ds
'06 ˆ8 35 t‰dt œ È313 8t 65 t2 ‘ 60 œ 26È13
œ 2tj 2k Ê ¸ ddtr ¸ œ 2Èt# 1; M œ 'C $ (xß yß z) ds œ '0 $ (t) Š2Èt# 1‹ dt 1
3/2 œ '0 ˆ 3# t‰ Š2Èt# 1‹ dt œ ’at# 1b “ œ 2$Î# 1 œ 2È2 1 "
1
!
34. r(t) œ at# 1b j 2tk , 1 Ÿ t Ÿ 1 Ê ddtr œ 2tj 2k Ê ¸ dr ¸ œ 2Èt# 1; M œ ' $ (xß yß z) ds dt
C
œ 'c1 1
ˆ15Èat#
1b 2‰ Š2Èt# 1‹ dt
œ 'c1 30 at# 1b dt œ ’30 Š t3 t‹“ 1
$
" "
œ 60 ˆ 3" 1‰ œ 80;
Mxz œ 'C y$ (xß yß z) ds œ 'c1 at# 1b c30 at# 1bd dt 1
œ 'c1 30 at% 1b dt œ ’30 Š t5 t‹“ 1
&
œ 48 Ê y œ
Mxz M
"
"
œ 60 ˆ 5" 1‰
48 œ 80 œ 53 ; Myz œ 'C x$ (xß yß z) ds œ 'C 0 $ ds œ 0 Ê x œ 0; z œ 0 by symmetry (since $ is
independent of z) Ê (xß yß z) œ ˆ!ß 35 ß 0‰ 35. r(t) œ È2t i È2t j a4 t# b k , 0 Ÿ t Ÿ 1 Ê
dr dt
œ È2i È2j 2tk Ê ¸ ddtr ¸ œ È2 2 4t# œ 2È1 t# ;
(a) M œ 'C $ ds œ '0 (3t) Š2È1 t# ‹ dt œ ’2 a1 t# b 1
$Î# "
“ œ 2 ˆ2$Î# 1‰ œ 4È2 2 !
(b) M œ 'C $ ds œ '0 a1b Š2È1 t# ‹ dt œ ’tÈ1 t# ln Št È1 t# ‹“ œ ’È2 ln Š1 È2‹“ a0 ln 1b "
1
!
œ È2 ln Š1 È2‹ 36. r(t) œ ti 2tj 23 t$Î# k , 0 Ÿ t Ÿ 2 Ê
dr dt
œ i 2j t"Î# k Ê ¸ ddtr ¸ œ È1 4 t œ È5 t;
# M œ 'C $ ds œ '0 ˆ3È5 t‰ ˆÈ5 t‰ dt œ '0 3(5 t) dt œ 32 (5 t)# ‘ ! œ 2
2
3 #
a7# 5# b œ
Myz œ 'C x$ ds œ '0 t[3(5 t)] dt œ '0 a15t 3t# b dt œ "25 t# t$ ‘ ! œ 30 8 œ 38; 2
2
2
2
# œ '0 ˆ10t$Î# 2t&Î# ‰ dt œ 4t&Î# 47 t(Î# ‘ ! œ 4(2)&Î# 47 (2)(Î# œ 16È2 2
œ
38 36
œ
19 18
,yœ
Mxz M
œ
76 36
œ
19 9
, and z œ
(24) œ 36;
#
Mxz œ 'C y$ ds œ '0 2t[3(5 t)] dt œ 2 '0 a15t 3t# b dt œ 76; Mxy œ 'C z$ ds œ '0 2
3 #
Mxy M
œ
144È2 7†36
37. Let x œ a cos t and y œ a sin t, 0 Ÿ t Ÿ 21. Then
dx dt
œ
4 7
32 7
È2 œ
dz dt
œ0
2 $Î# [3(5 3 t
144 7
t)] dt
È2 Ê x œ
Myz M
È2
œ a sin t,
dy dt
œ a cos t,
‰ Š dy ˆ dz ‰ dt œ a dt; Iz œ ' ax# y# b $ ds œ ' aa# sin# t a# cos# tb a$ dt Ê Êˆ dx dt dt ‹ dt C 0 #
#
21
#
œ '0 a$ $ dt œ 21$ a$ . 21
38. r(t) œ tj (2 2t)k , 0 Ÿ t Ÿ 1 Ê
dr dt
œ j 2k Ê ¸ ddtr ¸ œ È5; M œ 'C $ ds œ '0 $ È5 dt œ $ È5; 1
" Ix œ 'C ay# z# b $ ds œ '0 ct# (2 2t)# d $ È5 dt œ '0 a5t# 8t 4b $ È5 dt œ $ È5 53 t$ 4t# 4t‘ ! œ 1
1
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
5 3
$ È5 ;
Section 16.1 Line Integrals " Iy œ 'C ax# z# b $ ds œ '0 c0# (2 2t)# d $ È5 dt œ '0 a4t# 8t 4b $ È5 dt œ $ È5 43 t$ 4t# 4t‘ ! œ 1
1
Iz œ 'C ax# y# b $ ds œ '0 a0# t# b $ È5 dt œ $ È5 ’ t3 “ œ 1
"
$
!
39. r(t) œ (cos t)i (sin t)j tk , 0 Ÿ t Ÿ 21 Ê
" 3
4 3
$ È5 ;
$ È5
œ ( sin t)i (cos t)j k Ê ¸ ddtr ¸ œ Èsin# t cos# t 1 œ È2;
dr dt
(a) Iz œ 'C ax# y# b $ ds œ '0 acos# t sin# tb $ È2 dt œ 21$ È2 21
(b) Iz œ 'C ax# y# b $ ds œ '0 $ È2 dt œ 41$ È2 41
40. r(t) œ (t cos t)i (t sin t)j
2È2 $Î# k, 3 t
0ŸtŸ1 Ê
dr dt
œ (cos t t sin t)i (sin t t cos t)j È2t k
" Ê ¸ ddtr ¸ œ È(t 1)# œ t 1 for 0 Ÿ t Ÿ 1; M œ 'C $ ds œ '0 (t 1) dt œ "2 (t 1)# ‘ ! œ 1
Mxy œ 'C z$ ds œ '
È Š 2 3 2 t$Î# ‹ (t 0
œ
2È 2 3
ˆ 27 52 ‰ œ
1
2È 2 3
ˆ 24 ‰ 35 œ
1) dt œ
16È2 35
Ê zœ
2È 2 3
'0 ˆt&Î# t$Î# ‰ dt œ
Mxy M
œ Š 1635 2 ‹ ˆ 23 ‰ œ
È
32È2 105
œ '0 at# cos# t t# sin# tb (t 1) dt œ '0 at$ t# b dt œ ’ t4 t3 “ œ 1
2È 2 3
1
1
%
"
$
!
" 4
" #
a2# 1# b œ
3 #
;
27 t(Î# 25 t&Î# ‘ " !
; Iz œ 'C ax# y# b $ ds
" 3
œ
7 12
41. $ (xß yß z) œ 2 z and r(t) œ (cos t)j (sin t)k , 0 Ÿ t Ÿ 1 Ê M œ 21 2 as found in Example 3 of the text; also ¸ ddtr ¸ œ 1; Ix œ 'C ay# z# b $ ds œ '0 acos# t sin# tb (2 sin t) dt œ '0 (2 sin t) dt œ 21 2 1
42. r(t) œ ti
2È2 $Î# j 3 t
t# #
k, 0 Ÿ t Ÿ 2 Ê
1
dr dt
œ i È2 t"Î# j tk Ê ¸ ddtr ¸ œ È1 2t t# œ È(1 t)# œ 1 t for
0 Ÿ t Ÿ 2; M œ 'C $ ds œ '0 ˆ t"1 ‰ (1 t) dt œ '0 dt œ 2; Myz œ 'C x$ ds œ '0 t ˆ t"1 ‰ (1 t) dt œ ’ t2 “ œ 2; 2
Mxz œ 'C y$ ds œ '
2È2 $Î# 3 t 0
yœ
Mxz M
œ
16 15
2
, and z œ
Mxy M
œ
2
dt œ # 3
# È ’ 4152 t&Î# “ !
œ
2
2
$
œ '0 ˆt# 89 t$ ‰ dt œ ’ t3 29 t% “ œ $
; Mxy œ 'C z$ ds œ '0
2 # t
#
dt œ
#
$ # ’ t6 “ !
; Ix œ 'C ay# z# b $ ds œ '0 ˆ 98 t$ "4 t% ‰ dt œ ’ 92 t%
Iy œ 'C ax# z# b $ ds œ '0 ˆt# 4" t% ‰ dt œ ’ t3 2
32 15
2
# !
8 3
32 9
œ
# t& 20 “ !
œ
8 3
32 20
œ
64 15
œ
# t& 20 “ !
œ
; Iz œ 'C ax# y# b $ ds
56 9
43-46. Example CAS commands: Maple: f := (x,y,z) -> sqrt(1+30*x^2+10*y); g := t -> t; h := t -> t^2; k := t -> 3*t^2; a,b := 0,2; ds := ( D(g)^2 + D(h)^2 + D(k)^2 )^(1/2): 'ds' = ds(t)*'dt'; F := f(g,h,k): 'F(t)' = F(t); Int( f, s=C..NULL ) = Int( simplify(F(t)*ds(t)), t=a..b ); `` = value(rhs(%));
# !
% 3
# (a) # (b) # (c)
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Ê xœ
Myz M
œ
32 9
32 20
œ 1, 232 45
;
943
944
Chapter 16 Integration in Vector Fields
Mathematica: (functions and domains may vary) Clear[x, y, z, r, t, f] f[x_,y_,z_]:= Sqrt[1 30x2 10y] {a,b}= {0, 2}; x[t_]:= t y[t_]:= t2 z[t_]:= 3t2 r[t_]:= {x[t], y[t], z[t]} v[t_]:= D[r[t], t] mag[vector_]:=Sqrt[vector.vector] Integrate[f[x[t],y[t],z[t]] mag[v[t]], {t, a, b}] N[%] 16.2 VECTOR FIELDS, WORK, CIRCULATION, AND FLUX 1. f(xß yß z) œ ax# y# z# b `f `y
#
#
"Î#
# $Î#
œ y ax y z b
and
`f `y
œ
y x # y# z#
and
`f `z
" #
2. f(xß yß z) œ ln Èx# y# z# œ similarly,
`f `x
Ê
`f `z
#
$Î#
# $Î#
#
œ z ax y z b
ln ax# y# z# b Ê
œ
3. g(xß yß z) œ ez ln ax# y# b Ê
œ #" ax# y# z# b
z x # y # z#
`g `x
Ê ™fœ
œ x# 2x y# ,
`g `y
`f `x
(2x) œ x ax# y# z# b
Ê ™fœ
œ
" #
$Î#
; similarly,
xi yj zk ax# y# z# b$Î#
Š x# y"# z# ‹ (2x) œ
x x# y# z#
;
xi yj zk x # y# z#
œ x# 2y y# and
`g `z
œ ez
z Ê ™ g œ Š x#2xy# ‹ i Š x# 2y y# ‹ j e k
`g `x
4. g(xß yß z) œ xy yz xz Ê
œ y z,
`g `y
œ x z, and
`g `z
œ y x Ê ™ g œ (y z)i (B z)j (x y)k
5. kFk inversely proportional to the square of the distance from (xß y) to the origin Ê È(M(xß y))# (N(xß y))# œ
k x# y#
y x È x # y# i È x# y# j Then M(xß y) œ Èx#ax and N(xß y) œ Èx#ay y# y# ky k kx a œ x# y# Ê F œ # # $Î# i # # $Î# j , for any constant ax y b ax y b
, k 0; F points toward the origin Ê F is in the direction of n œ
Ê F œ an , for some constant a 0. Ê È(M(xß y))# (N(xß y))# œ a Ê
k0
6. Given x# y# œ a# b# , let x œ Èa# b# cos t and y œ Èa# b# sin t. Then r œ ŠÈa# b# cos t‹ i ŠÈa# b# sin t‹ j traces the circle in a clockwise direction as t goes from 0 to 21 Ê v œ ŠÈa# b# sin t‹ i ŠÈa# b# cos t‹ j is tangent to the circle in a clockwise direction. Thus, let F œ v Ê F œ yi xj and F(0ß 0) œ 0 . 7. Substitute the parametric representations for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F , and calculate 'C F †
dr dt
.
(a) F œ 3ti 2tj 4tk and
dr dt
œijk Ê F†
(b) F œ 3t# i 2tj 4t% k and œ
7 3
2œ
dr dt
dr dt
œ 9t Ê
œ i 2tj 4t$ k Ê F †
dr dt
'01 9t dt œ 9#
œ 7t# 16t( Ê
'01 a7t# 16t( b dt œ 37 t$ 2t) ‘ "!
13 3
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 16.2 Vector Fields, Work, Circulation, and Flux (c) r" œ ti tj and r# œ i j tk ; F" œ 3ti 2tj and F# œ 3i 2j 4tk and
œ k Ê F# †
d r# dt
d r# dt
d r" dt
œ i j Ê F" †
'01 4t dt œ 2
œ 4t Ê
Ê
d r" dt 5 #
'01 5t dt œ #5 ;
œ 5t Ê
2œ
9 #
8. Substitute the parametric representation for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F, and calculate 'C F †
dr dt
.
" ‰ (a) F œ ˆ t# 1 j and
dr dt
œijkÊF†
" ‰ (b) F œ ˆ t# 1 j and
dr dt
œ i 2tj 4t$ k Ê F †
dr dt
" t# 1
œ
dr dt
" ‰ (c) r" œ ti tj and r# œ i j tk ; F" œ ˆ t# 1 j
Ê F# †
d r# dt
œ 0 Ê '0
1
" t# 1
dt œ
Ê '0
1
œ
2t t# 1 and ddtr"
" t# 1
Ê '0
1
"
dt œ ctan" td ! œ 2t t# 1
1 4 "
dt œ cln at# 1bd ! œ ln 2
œ i j Ê F" †
d r" dt
œ
" t# 1
; F# œ
" #
j and
d r# dt
œk
1 4
9. Substitute the parametric representation for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F, and calculate 'C F †
dr dt
.
'01 ˆ2Èt 2t‰ dt œ 43 t$Î# t# ‘ "! œ "3 1 " F œ t# i 2tj tk and ddtr œ i 2tj 4t$ k Ê F † ddtr œ 4t% 3t# Ê '0 a4t% 3t# b dt œ 45 t& t$ ‘ ! œ "5 1 r" œ ti tj and r# œ i j tk ; F" œ 2tj Èt k and ddtr œ i j Ê F" † ddtr œ 2t Ê '0 2t dt œ 1; 1 F# œ Èti 2j k and ddtr œ k Ê F# † ddtr œ 1 Ê '0 dt œ 1 Ê 1 1 œ 0
(a) F œ Èti 2tj Ètk and (b) (c)
dr dt
œijk Ê F†
œ 2Èt 2t Ê
dr dt
"
#
"
#
10. Substitute the parametric representation for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F, and calculate 'C F †
dr dt
. œ 3t# Ê '0 3t# dt œ 1 1
(a) F œ t# i t# j t# k and
dr dt
œijk Ê F†
(b) F œ t$ i t' j t& k and
dr dt
œ i 2tj 4t$ k Ê F †
%
œ ’ t4
t) 4
"
94 t* “ œ !
dr dt
œ t$ 2t( 4t) Ê '0 at$ 2t( 4t) b dt 1
17 18
(c) r" œ ti tj and r# œ i j tk ; F" œ t# i and F# œ i tj tk and
dr dt
d r# dt
œ k Ê F# †
d r# dt
d r" dt
œ i j Ê F" †
œ t Ê '0 t dt œ 1
" #
Ê
d r" dt " 3
œ t# Ê '0 t# dt œ
1
" #
œ
" 3
;
5 6
11. Substitute the parametric representation for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F, and calculate 'C F †
dr dt
.
(a) F œ a3t# 3tb i 3tj k and
†
(b) F œ a3t# 3tb i 3t% j k
Ê F†
Ê
dr dt œ i j k Ê F and ddtr œ i 2tj 4t$ k
dr dt
œ 3t# 1 Ê
œ 6t& 4t$ 3t# 3t
'0 a6t& 4t$ 3t# 3tb dt œ t' t% t$ 3# t# ‘ "! œ 3# 1
(c) r" œ ti tj and r# œ i j tk ; F" œ a3t# 3tb i k and Ê
dr dt
'01 a3t# 1b dt œ ct$ td "! œ 2
d r" dt
œ i j Ê F" †
d r" dt
œ 3t# 3t
œ k Ê F# †
d r# dt
œ1 Ê
'0 a3t# 3tb dt œ t$ 32 t# ‘ "! œ "# ; F# œ 3tj k and ddtr 1
Ê "# 1 œ
#
'01 dt œ 1
1 2
12. Substitute the parametric representation for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F, and calculate 'C F †
dr dt
.
(a) F œ 2ti 2tj 2tk and
dr dt
œijk Ê F†
dr dt
œ 6t Ê
'01 6t dt œ c3t# d "! œ 3
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
945
946
Chapter 16 Integration in Vector Fields
(b) F œ at# t% b i at% tb j at t# b k and Ê '0 a6t& 5t% 3t# b dt œ ct' t& 1
dr dt œ i " t$ d ! œ 3
2tj 4t$ k Ê F †
(c) r" œ ti tj and r# œ i j tk ; F" œ ti tj 2tk and F# œ (1 t)i (t 1)j 2k and
d r# dt
œ k Ê F# †
d r# dt
dr dt
œ 6t& 5t% 3t#
œ i j Ê F" †
dr" dt
œ 2t Ê '0 2t dt œ "; 1
d r" dt
œ 2 Ê '0 2 dt œ 2 Ê " 2 œ 3 1
13. x œ t, y œ 2t 1, 0 Ÿ t Ÿ 3 Ê dx œ dt Ê 'C ax yb dx œ '0 at a2t 1bb dt œ '0 at 1b dt œ "# t2 t‘ ! œ 15 2 3
14. x œ t, y œ t2 , 1 Ÿ t Ÿ 2 Ê dy œ 2t dt Ê 'C
x y
dy œ '1
2
t t2 a2tb dt
3
3
œ '1 2 dt œ c2td21 œ 2 2
15. C1 : x œ t, y œ 0, 0 Ÿ t Ÿ 3 Ê dy œ 0; C2 : x œ 3, y œ t, 0 Ÿ t Ÿ 3 Ê dy œ dt Ê 'C ax2 y2 b dy
œ 'C ax2 y2 b dx 'C ax2 y2 b dx œ '0 at2 02 b † 0 '0 a32 t2 b dt œ '0 a9 t2 bdt œ 9t 13 t3 ‘ ! œ 36 3
1
3
3
3
2
16. C1 : x œ t, y œ 3t, 0 Ÿ t Ÿ 1 Ê dx œ dt; C2 : x œ 1 t, y œ 3, 0 Ÿ t Ÿ 1 Ê dx œ dt; C3 : x œ 0, y œ 3 t, 0 Ÿ t Ÿ 3 Ê dx œ 0 Ê 'C Èx y dx œ 'C Èx y dx 'C Èx y dx 'C Èx y dx 1
2
3
œ '0 Èt 3t dt '0 Èa1 tb 3 a1bdt '0 È0 a3 tb † 0 œ '0 2Èt dt '0 È4 t dt 1
1
3
1
œ 43 t2Î3 ‘ ! ’ 23 a4 tb2Î3 “ œ 1
4 3
!
Š2È3
16 3 ‹
1
1
œ 2È3 4
17. ratb œ ti j t2 k , 0 Ÿ t Ÿ 1 Ê dx œ dt, dy œ 0, dz œ 2t dt (a) (b) (c)
'C ax y zb dx œ '01 at 1 t2 b dt œ 12 t2 t 13 t3 ‘ 1! œ 56 'C ax y zb dy œ '01 at 1 t2 b † 0 œ 0
'C ax y zb dz œ '01 at 1 t2 b 2t dt œ '01 a2t2 2t 2t3 b dt œ
1
œ 23 t3 t2 12 t4 ‘ ! œ 56
18. ratb œ acos tbi asin tbj acos tbk , 0 Ÿ t Ÿ 1 Ê dx œ sin t dt, dy œ cos t dt, dz œ sin t dt (a)
'C x z dx œ '01 acos tb acos tbasin tbdt œ '01 cos2 t sin tdt œ ’ 13 acos tb3 “ 1 œ 23
(b)
'C x z dy œ '01 acos tb acos tbacos tbdt œ '01 cos3 t dt œ '01 a1 sin2 tb cos t dt œ ’ 13 asin tb3 sin t“ 1 œ 0
(c)
!
'C x y z dz œ '0 acos tbasin tb acos tbasin tbdt œ '0 1 1 1 œ 18 '0 a1 cos 4tb dt œ 18 t 32 sin 4t‘ ! œ 18 1
1
cos t sin t dt œ 2
2
14
'0
1
19. r œ ti t# j tk , 0 Ÿ t Ÿ 1, and F œ xyi yj yzk Ê F œ t$ i t# j t$ k and Ê F†
dr dt
œ 2t$ Ê work œ '0 2t$ dt œ 1
sin 2t dt œ
dr dt
2
41
œ i 2tj k
" #
20. r œ (cos t)i (sin t)j 6t k , 0 Ÿ t Ÿ 21, and F œ 2yi 3xj (x y)k Ê F œ (2 sin t)i (3 cos t)j (cos t sin t)k and œ 3 cos# t 2sin2 t œ 32 t
3 4
" 6
sin 2t t
cos t sin 2t 2
" 6
" 6
dr dt
œ ( sin t)i (cos t)j 6" k Ê F †
sin t Ê work œ '0 ˆ3 cos# t 2 sin2 t
sin t
" 6
cos
#1 t‘ !
21
" 6
cos t
" 6
dr dt
sin t‰ dt
œ1
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
'
1
!
1 cos 4t 2 0
dt
Section 16.2 Vector Fields, Work, Circulation, and Flux 21. r œ (sin t)i (cos t)j tk , 0 Ÿ t Ÿ 21, and F œ zi xj yk Ê F œ ti (sin t)j (cos t)k and dr dt
œ (cos t)i (sin t)j k Ê F †
œ cos t t sin t
t 2
sin 2t 4
dr dt
œ t cos t sin# t cos t Ê work œ '0 at cos t sin# t cos tb dt 21
#1
sin t‘ ! œ 1
22. r œ (sin t)i (cos t)j 6t k , 0 Ÿ t Ÿ 21, and F œ 6zi y# j 12xk Ê F œ ti acos# tbj (12 sin t)k and dr dt
œ (cos t)i (sin t)j 6" k Ê F †
dr dt
œ t cos t sin t cos# t 2 sin t
Ê work œ '0 at cos t sin t cos# t 2 sin tb dt œ cos t t sin t 21
1 3
#1
cos$ t 2 cos t‘ ! œ 0
23. x œ t and y œ x# œ t# Ê r œ ti t# j , 1 Ÿ t Ÿ 2, and F œ xyi (x y)j Ê F œ t$ i at t# b j and dr dt
œ i 2tj Ê F †
dr dt
œ t$ a2t# 2t$ b œ 3t$ 2t# Ê 'C xy dx (x y) dy œ 'C F †
#
œ 34 t% 32 t$ ‘ " œ ˆ12
16 ‰ 3
ˆ 34 23 ‰ œ
45 4
18 3
œ
dr dt
dt œ 'c" a3t$ 2t# b dt #
69 4
24. Along (0ß 0) to (1ß 0): r œ ti , 0 Ÿ t Ÿ 1, and F œ (x y)i (x y)j Ê F œ ti tj and
dr dt
œi Ê F†
dr dt
œ t;
Along (1ß 0) to (0ß 1): r œ (1 t)i tj , 0 Ÿ t Ÿ 1, and F œ (x y)i (x y)j Ê F œ (1 2t)i j and dr dr dt œ i j Ê F † dt œ 2t; Along (0ß 1) to (0ß 0): r œ (1 t)j , 0 Ÿ t Ÿ 1, and F œ (x y)i (x y)j Ê F œ (t 1)i (1 t)j and dr dt
œ j Ê F †
dr dt
œ t 1 Ê 'C (x y) dx (x y) dy œ '0 t dt '0 2t dt '0 (t 1) dt œ '0 (4t 1) dt 1
1
1
1
dr dy
œ 2yi j and F †
"
œ c2t# td ! œ 2 1 œ 1 25. r œ xi yj œ y# i yj , 2 y 1, and F œ x# i yj œ y% i yj Ê Ê
dr dy
œ 2y& y
4‰ 3 63 39 'C F † T ds œ '2c1 F † dydr dy œ '2c1 a2y& yb dy œ 3" y' "# y# ‘ " œ ˆ 3" #" ‰ ˆ 64 3 # œ # 3 œ # #
26. r œ (cos t)i (sin t)j , 0 Ÿ t Ÿ ÊF†
dr dt
1 #
, and F œ yi xj Ê F œ (sin t)i (cos t)j and
œ sin# t cos# t œ 1 Ê
'C F † dr œ '0
1Î2
dr dt
œ ( sin t)i (cos t)j
(1) dt œ 1#
27. r œ (i j) t(i 2j) œ (1 t)i (1 2t)j , 0 Ÿ t Ÿ 1, and F œ xyi (y x)j Ê F œ a1 3t 2t# b i tj and dr dt
œ i 2j Ê F †
dr dt
œ 1 5t 2t# Ê work œ 'C F †
dr dt
dt œ '0 a1 5t 2t# b dt œ t 25 t# 23 t$ ‘ ! œ 1
"
28. r œ (2 cos t)i (2 sin t)j , 0 Ÿ t Ÿ 21, and F œ ™ f œ 2(x y)i 2(x y)j Ê F œ 4(cos t sin t)i 4(cos t sin t)j and ddtr œ (2 sin t)i (2 cos t)j Ê F †
25 6
dr dt
œ 8 asin t cos t sin# tb 8 acos# t cos t sin tb œ 8 acos# t sin# tb œ 8 cos 2t Ê work œ 'C ™ f † dr œ 'C F †
dr dt
dt œ '0 8 cos 2t dt œ c4 sin 2td #!1 œ 0 21
29. (a) r œ (cos t)i (sin t)j , 0 Ÿ t Ÿ 21, F" œ xi yj , and F# œ yi xj Ê F" œ (cos t)i (sin t)j , and F# œ ( sin t)i (cos t)j Ê F" †
dr dt
dr dt
œ ( sin t)i (cos t)j ,
œ 0 and F# †
dr dt
œ sin# t cos# t œ 1
Ê Circ" œ '0 0 dt œ 0 and Circ# œ '0 dt œ 21; n œ (cos t)i (sin t)j Ê F" † n œ cos# t sin# t œ 1 and 21
21
F# † n œ 0 Ê Flux" œ '0 dt œ 21 and Flux# œ '0 0 dt œ 0 21
21
(b) r œ (cos t)i (4 sin t)j , 0 Ÿ t Ÿ 21 Ê F# œ (4 sin t)i (cos t)j Ê F" †
dr dt
dr dt
œ ( sin t)i (4 cos t)j , F" œ (cos t)i (4 sin t)j , and
œ 15 sin t cos t and F# †
dr dt
œ 4 Ê Circ" œ '0 15 sin t cos t dt 21
œ "25 sin# t‘ ! œ 0 and Circ# œ '0 4 dt œ 81; n œ Š È417 cos t‹ i Š È"17 sin t‹ j Ê F" † n #1
21
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
947
948
Chapter 16 Integration in Vector Fields œ
4 È17
cos# t
sin# t and F# † n œ È1517 sin t cos t Ê Flux" œ '0 (F" † n) kvk dt œ '0 Š È417 ‹ È17 dt 21
4 È17
21
# ‘ œ 81 and Flux# œ '0 (F# † n) kvk dt œ '0 Š È1517 sin t cos t‹ È17 dt œ 15 2 sin t ! œ 0 21
21
#1
30. r œ (a cos t)i (a sin t)j , 0 Ÿ t Ÿ 21, F" œ 2xi 3yj , and F# œ 2xi (x y)j Ê
œ (a sin t)i (a cos t)j ,
dr dt
F" œ (2a cos t)i (3a sin t)j , and F# œ (2a cos t)i (a cos t a sin t)j Ê n kvk œ (a cos t)i (a sin t)j , F" † n kvk œ 2a# cos# t 3a# sin# t, and F# † n kvk œ 2a# cos# t a# sin t cos t a# sin# t Ê Flux" œ '0 a2a# cos# t 3a# sin# tb dt œ 2a# 2t 21
sin 2t ‘ #1 4 !
Flux# œ '0 a2a# cos# t a# sin t cos t a# sin# tb dt œ 2a# 2t 21
31. F" œ (a cos t)i (a sin t)j ,
d r" dt
sin 2t ‘ #1 4 !
œ 1a# , and
a# #
#1
3a# 2t
œ (a sin t)i (a cos t)j Ê F" †
sin 2t ‘ #1 4 ! d r" dt
csin# td ! a# 2t
sin 2t ‘ #1 4 !
œ 1a#
œ 0 Ê Circ" œ 0; M" œ a cos t,
N" œ a sin t, dx œ a sin t dt, dy œ a cos t dt Ê Flux" œ 'C M" dy N" dx œ '0 aa# cos# t a# sin# tb dt œ '0 a# dt œ a# 1;
1
1
F # œ ti ,
d r# dt
œ i Ê F# †
d r# dt
œ t Ê Circ# œ 'ca t dt œ 0; M# œ t, N# œ 0, dx œ dt, dy œ 0 Ê Flux# a
œ 'C M# dy N# dx œ 'ca 0 dt œ 0; therefore, Circ œ Circ" Circ# œ 0 and Flux œ Flux" Flux# œ a# 1 a
32. F" œ aa# cos# tb i aa# sin# tb j ,
d r" dt
œ (a sin t)i (a cos t)j Ê F" †
d r" dt
œ a$ sin t cos# t a$ cos t sin# t
Ê Circ" œ '0 aa$ sin t cos# t a$ cos t sin# tb dt œ 2a3 ; M" œ a# cos# t, N" œ a# sin# t, dy œ a cos t dt, 1
$
dx œ a sin t dt Ê Flux" œ 'C M" dy N" dx œ '0 aa$ cos$ t a$ sin$ tb dt œ 1
F # œ t# i ,
d r# dt
œ i Ê F# †
d r# dt
œ t# Ê Circ# œ 'ca t# dt œ a
2a$ 3
4 3
a$ ;
; M# œ t# , N# œ 0, dy œ 0, dx œ dt
Ê Flux# œ 'C M# dy N# dx œ 0; therefore, Circ œ Circ" Circ# œ 0 and Flux œ Flux" Flux# œ 33. F" œ (a sin t)i (a cos t)j ,
d r" dt
œ (a sin t)i (a cos t)j Ê F" †
d r" dt
4 3
a$
œ a# sin# t a# cos# t œ a#
Ê Circ" œ '0 a# dt œ a# 1 ; M" œ a sin t, N" œ a cos t, dx œ a sin t dt, dy œ a cos t dt 1
Ê Flux" œ 'C M" dy N" dx œ '0 aa# sin t cos t a# sin t cos tb dt œ 0; F# œ tj , 1
dr# dt
œ i Ê F# †
d r# dt
œ0
Ê Circ# œ 0; M# œ 0, N# œ t, dx œ dt, dy œ 0 Ê Flux# œ 'C M# dy N# dx œ 'ca t dt œ 0; therefore, a
Circ œ Circ" Circ# œ a# 1 and Flux œ Flux" Flux# œ 0 34. F" œ aa# sin# tb i aa# cos# tb j ,
d r" dt
œ (a sin t)i (a cos t)j Ê F" †
Ê Circ" œ '0 aa$ sin$ t a$ cos$ tb dt œ 1
4 3
d r" dt
œ a$ sin$ t a$ cos$ t
a$ ; M" œ a# sin# t, N" œ a# cos# t, dy œ a cos t dt, dx œ a sin t dt
Ê Flux" œ 'C M" dy N" dx œ '0 aa$ cos t sin# t a$ sin t cos# tb dt œ 1
2 3
a$ ; F# œ t# j ,
d r# dt
œ i Ê F# †
d r# dt
œ0
Ê Circ# œ 0; M# œ 0, N# œ t# , dy œ 0, dx œ dt Ê Flux# œ 'C M# dy N# dx œ 'ca t# dt œ 23 a$ ; therefore, a
Circ œ Circ" Circ# œ
4 3
a$ and Flux œ Flux" Flux# œ 0
35. (a) r œ (cos t)i (sin t)j , 0 Ÿ t Ÿ 1, and F œ (x y)i ax# y# b j Ê F œ (cos t sin t)i acos# t sin# tb j Ê F †
dr dt
(b) r œ (1 2t)i , 0 Ÿ t Ÿ 1, and F œ (x y)i F†
dr dt
œ 4t 2 Ê 'C F † T ds œ '0 (4t 1
œ (sin t)i (cos t)j and
œ sin t cos t sin# t cos t Ê 'C F † T ds
œ '0 a sin t cos t sin# t cos tb dt œ 2" sin# t 1
dr dt
sin 2t 1 ‘1 4 sin t ! œ # ax# y# b j Ê ddtr œ 2i and F œ (1 " 2) dt œ c2t# 2td ! œ 0 t #
2t)i (1 2t)# j Ê
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 16.2 Vector Fields, Work, Circulation, and Flux (c) r" œ (1 t)i tj , 0 Ÿ t Ÿ 1, and F œ (x y)i ax# y# b j Ê Ê F†
d r" dt
œ (2t 1) a1 2t 2t# b œ 2t# Ê Flow" œ 'C F †
d r" dt
"
#
#
0 Ÿ t Ÿ 1, and F œ (x y)i ax y b j Ê œ i a2t# 2t 1b j Ê F † "
œ t# 23 t$ ‘ ! œ
" 3
d r# dt
œ i j and F œ (1 2t)i a1 2t 2t# b j
d r" dt
œ '0 2t# dt œ 1
#
2 3
; r# œ ti (t 1)j ,
#
œ i j and F œ i at t 2t 1b j
œ 1 a2t# 2t 1b œ 2t 2t# Ê Flow# œ 'C F †
dr # dt
949
#
Ê Flow œ Flow" Flow# œ
2 3
" 3
dr # dt
œ '0 a2t 2t# b dt 1
œ1
36. From (1ß 0) to (0ß 1): r" œ (1 t)i tj , 0 Ÿ t Ÿ 1, and F œ (x y)i ax# y# b j Ê
d r" dt
œ i j ,
F œ i a1 2t 2t# b j , and n" kv" k œ i j Ê F † n" kv" k œ 2t 2t# Ê Flux" œ '0 a2t 2t# b dt 1
"
œ t# 23 t$ ‘ ! œ
" 3
;
From (0ß 1) to (1ß 0): r# œ ti (1 t)j , 0 Ÿ t Ÿ 1, and F œ (x y)i ax# y# b j Ê
d r# dt
œ i j ,
#
F œ (1 2t)i a1 2t 2t b j , and n# kv# k œ i j Ê F † n# kv# k œ (2t 1) a1 2t 2t# b œ 2 4t 2t# Ê Flux# œ '0 a2 4t 2t# b dt œ 2t 2t# 23 t$ ‘ ! œ 23 ; 1
"
From (1ß 0) to (1ß 0): r$ œ (1 2t)i , 0 Ÿ t Ÿ 1, and F œ (x y)i ax# y# b j Ê #
d r$ dt
œ 2i ,
#
F œ (1 2t)i a1 4t 4t b j , and n$ kv$ k œ 2j Ê F † n$ kv$ k œ 2 a1 4t 4t b Ê Flux$ œ 2 '0 a1 4t 4t# b dt œ 2 t 2t# 43 t$ ‘ ! œ 1
"
37. (a) y œ 2x, 0 Ÿ x Ÿ 2 Ê ratb œ ti 2tj , 0 Ÿ t Ÿ 2 Ê œ 4t2 8t2 œ 12t2 Ê Flow œ 'C F †
dr dt
2 3
2 3
œ
œ Ša2tb2 i 2atba2tbj‹ † ai 2jb
2
dr dt
œ Šat2 b i 2atbat2 bj‹ † ai 2tjb
dr dt
œ i 2tj Ê F †
2
dt œ '0 5t4 dt œ ct5 d ! œ 32 2
dr dt
2
œ Šˆ "# t3 ‰ i 2atbˆ "# t3 ‰j‹ † ai 3t2 jb œ 14 t6 32 t6 œ 74 t6 Ê Flow œ 'C F † 2
dr dt
dr dt
œ i 3t2 j
dt œ '0 74 t6 dt œ 14 t7 ‘ ! 2
2
œ 32 38. (a) C1 : ratb œ a1 tbi j , 0 Ÿ t Ÿ 2 Ê
C4 : ratb œ i at 1bj , 0 Ÿ t Ÿ 2 Ê Ê Flow œ 'C F †
dr dt
dt œ 'C F † 1
dr dt
œ i Ê F †
dr dt
C2 : ratb œ i a1 tbj , 0 Ÿ t Ÿ 2 Ê C3 : ratb œ at 1bi j , 0 Ÿ t Ÿ 2 Ê
dr dt
dr dt dr dt
dr dt
œ j Ê F †
œiÊF† œjÊF†
dt 'C F †
dr dt
2
dr dt dr dt
œ aa1bi aa1 tb 2a1bbjb † aib œ 1; dr dt
œ aa1 tbi aa1b 2a1 tbbjb † ajb œ 2t 1;
œ aa1bi aat 1b 2a1bbjb † aib œ 1; œ aat 1bi aa1b 2at 1bbjb † ajb œ 2t 1;
dt 'C F † 3
dr dt
dt 'C F † 4
dr dt
dt
œ '0 a1b dt '0 a2t 1b dt '0 a1b dt '0 a2t 1b dt œ ctd 2! ct2 td ! ctd !2 ct2 td ! 2
2
2
2
2
œ 2 2 2 2 œ 0 (b) x2 y2 œ 4 Ê ratb œ a2cos tbi a2sin tbj , 0 Ÿ t Ÿ 21 Ê ÊF†
dr dt
dr dt
2
œ a2sin tbi a2cos tbj
œ aa2sin tbi a2cos t 2a2sin tbbjb † aa2sin tbi a2cos tbjb œ 4sin2 t 4cos2 t 8sin t cos t
œ 4cos 2t 4sin 2t Ê Flow œ 'C F †
dr dt
(c) answers will vary, one possible path is: C1 : ratb œ ti , 0 Ÿ t Ÿ 1 Ê ddtr œ i Ê F † C2 : ratb œ a1 tbi tj , 0 Ÿ t Ÿ 1 Ê C3 : ratb œ a1 tbj , 0 Ÿ t Ÿ 1 Ê
dr dt
" 3
2
(c) answers will vary, one possible path is y œ 12 x3 , 0 Ÿ x Ÿ 2 Ê ratb œ ti "# t3 j , 0 Ÿ t Ÿ 2 Ê ÊF†
dr dt
œ i 2tj Ê F †
dr dt
" 3
dt œ '0 12t2 dt œ c4t3 d ! œ 32
dr dt
(b) y œ x2 , 0 Ÿ x Ÿ 2 Ê ratb œ ti t2 j , 0 Ÿ t Ÿ 2 Ê œ t4 4t4 œ 5t4 Ê Flow œ 'C F †
Ê Flux œ Flux" Flux# Flux$ œ
2 3
dr dt
dt œ '0 a4cos 2t 4sin 2tb dt œ c2sin 2t 2cos 2td 2!1 œ 0 21
dr dt
œ aa0bi at 2a1bbjb † aib œ 0;
œ i j Ê F †
œ j Ê F †
dr dt
dr dt
œ ati aa1 tb 2tbjb † ai jb œ 1;
œ aa1 tbi a0 2a1 tbbjb † ajb œ 2t 1;
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
950
Chapter 16 Integration in Vector Fields Ê Flow œ 'C F †
dt œ 'C F †
dr dt
1
dr dt
dt 'C F † 2
dr dt
dt 'C F † 3
dr dt
dt œ '0 a0b dt '0 a1b dt '0 a2t 1b dt 1
1
1
1
œ 0 ctd 1! ct2 td ! œ 1 a1b œ 0 39. F œ Èx#y y# i
j on x# y# œ 4;
x È x# y#
at (2ß 0), F œ j ; at (0ß 2), F œ i ; at (2ß 0), È F œ j ; at (!ß 2), F œ i ; at ŠÈ2ß È2‹ , F œ #3 i #" j ; at ŠÈ2ß È2‹ , F œ Fœ
È3 #
È3 #
i #" j ; at ŠÈ2ß È2‹ ,
i #" j ; at ŠÈ2ß È2‹ , F œ
È3 #
i #" j
40. F œ xi yj on x# y# œ 1; at (1ß 0), F œ i ; at (1ß 0), F œ i ; at (0ß 1), F œ j ; at (0ß 1), F œ j ; at Š "# ß at Š "# ß
È3 # ‹,
at Š "# ß
È3 # ‹,
at Š "# ß
È3 # ‹,
Fœ
" #
F œ "# i Fœ
È3 # ‹,
" #
i
i È3 #
È3 #
È3 #
j;
j;
j;
F œ "# i
È3 #
j.
41. (a) G œ P(xß y)i Q(xß y)j is to have a magnitude Èa# b# and to be tangent to x# y# œ a# b# in a counterclockwise direction. Thus x# y# œ a# b# Ê 2x 2yyw œ 0 Ê yw œ xy is the slope of the tangent line at any point on the circle Ê yw œ ba at (aß b). Let v œ bi aj Ê kvk œ Èa# b# , with v in a counterclockwise direction and tangent to the circle. Then let P(xß y) œ y and Q(xß y) œ x Ê G œ yi xj Ê for (aß b) on x# y# œ a# b# we have G œ bi aj and kGk œ Èa# b# . (b) G œ ˆÈx# y# ‰ F œ ŠÈa# b# ‹ F . 42. (a) From Exercise 41, part a, yi xj is a vector tangent to the circle and pointing in a counterclockwise direction Ê yi xj is a vector tangent to the circle pointing in a clockwise direction Ê G œ Èyxi #xjy# is a unit vector tangent to the circle and pointing in a clockwise direction. (b) G œ F 43. The slope of the line through (xß y) and the origin is pointing away from the origin Ê F œ
xi yj È x# y#
y x
Ê v œ xi yj is a vector parallel to that line and
is the unit vector pointing toward the origin.
44. (a) From Exercise 43, Èxxi #yjy# is a unit vector through (xß y) pointing toward the origin and we want kFk to have magnitude Èx# y# Ê F œ Èx# y# Š Èxxi #yjy# ‹ œ xi yj . (b) We want kFk œ
C È x# y#
where C Á 0 is a constant Ê F œ
C È x# y#
yj Š Èxxi #yjy# ‹ œ C Š xx#i y# ‹.
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 16.2 Vector Fields, Work, Circulation, and Flux
951
45. Yes. The work and area have the same numerical value because work œ 'C F † dr œ 'C yi † dr œ 'b [f(t)i] † i a
df dt
j‘ dt
[On the path, y equals f(t)]
œ 'a f(t) dt œ Area under the curve b
46. r œ xi yj œ xi f(x)j Ê from the origin Ê F †
'C
Ê
dr dx
dr dx
œ
F † T ds œ 'C F †
[because f(t) 0]
œ i f w (x)j ; F œ k†y†f (x) È x# y# w
kx È x# y#
dx œ 'a k b
dr dx
d dx
k È x# y#
œ
(xi yj) has constant magnitude k and points away
kx k†f(x)†f (x) Èx# [f(x)]# w
œk
d dx
Èx# [f(x)]# , by the chain rule
Èx# [f(x)]# dx œ k Èx# [f(x)]# ‘ b a
œ k ˆÈb# [f(b)]# Èa# [f(a)]# ‰ , as claimed. 47. F œ 4t$ i 8t# j 2k and 48. F œ 12t# j 9t# k and
dr dt
œ i 2tj Ê F †
dr dt
œ 3j 4k Ê F †
49. F œ (cos t sin t)i (cos t)k and
dr dt
dr dt
œ 12t$ Ê Flow œ '0 12t$ dt œ c3t% d ! œ 48 2
œ 72t# Ê Flow œ '0 72t# dt œ c24t$ d ! œ 24 1
œ ( sin t)i (cos t)k Ê F †
dr dt
#
dr dt
"
œ sin t cos t 1
Ê Flow œ '0 ( sin t cos t 1) dt œ 2" cos# t t‘ ! œ ˆ #" 1‰ ˆ #" 0‰ œ 1 1
1
50. F œ (2 sin t)i (2 cos t)j 2k and
dr dt
œ (2 sin t)i (2 cos t)j 2k Ê F †
dr dt
œ 4 sin# t 4 cos# t 4 œ 0
Ê Flow œ 0 1 #
51. C" : r œ (cos t)i (sin t)j tk , 0 Ÿ t Ÿ Ê F†
dr dt
Ê F œ (2 cos t)i 2tj (2 sin t)k and
1Î2
C# : r œ j
1 #
1Î#
( sin 2t 2t cos t 2 sin t) dt œ 2" cos 2t 2t sin t 2 cos t 2 cos t‘ !
(1 t)k , 0 Ÿ t Ÿ 1 Ê F œ 1(1 t)j 2k and
Ê Flow# œ '0 1 dt œ 1
c1td "!
Ê Flow$ œ '0 2t dt œ 1
œx
dx dt
y
dy dt
z
" ct# d ! dz dt
dr dt
œ 1# k Ê F †
dr dt
œ 1 1;
œ 1
œ 1 ;
C$ : r œ ti (1 t)j , 0 Ÿ t Ÿ 1 Ê F œ 2ti 2(1 t)k and
dr dt
œ ( sin t)i (cos t)j k
œ 2 cos t sin t 2t cos t 2 sin t œ sin 2t 2t cos t 2 sin t
Ê Flow" œ '0
52. F †
dr dt
dr dt
œij Ê F†
dr dt
œ 2t
œ 1 Ê Circulation œ (1 1) 1 1 œ 0
œ
` f dx ` x dt
` f dy ` y dt
by the chain rule Ê Circulation œ 'C F †
dr dt
` f dz ` z dt
dt œ 'a
, where f(xß yß z) œ b
d dt afaratbbb
" #
ax# y# x# b Ê F †
dr dt
œ
d dt afaratbbb
dt œ farabbb faraabb. Since C is an entire ellipse,
rabb œ raab, thus the Circulation œ 0. 53. Let x œ t be the parameter Ê y œ x# œ t# and z œ x œ t Ê r œ ti t# j tk , 0 Ÿ t Ÿ 1 from (0ß 0ß 0) to (1ß 1ß 1) Ê œ
dr dt
œ i 2tj k and F œ xyi yj yzk œ t$ i t# j t$ k Ê F †
œ t$ 2t$ t$ œ 2t$ Ê Flow œ '0 2t$ dt 1
" #
54. (a) F œ ™ axy# z$ b Ê F † œ 'a
(b)
dr dt
b
d dt afaratbbb
dr dt
œ
` f dx ` x dt
` f dy ` y dt
` z dz ` z dt
œ
df dt
, where f(xß yß z) œ xy# z$ Ê )C F †
dr dt
dt œ farabbb faraabb œ 0 since C is an entire ellipse.
Ð2ß1ß 1Ñ
'C F † ddtr œ 'Ð1ß1ß1Ñ
d dt
Ð#ß"ß"Ñ
axy# z$ b dt œ cxy# z$ d Ð"ß"ß"Ñ œ (2)(1)# (1)$ (1)(1)# (1)$ œ 2 1 œ 3
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
dt
952
Chapter 16 Integration in Vector Fields
55-60. Example CAS commands: Maple: with( LinearAlgebra );#55 F := r -> < r[1]*r[2]^6 | 3*r[1]*(r[1]*r[2]^5+2) >; r := t -> < 2*cos(t) | sin(t) >; a,b := 0,2*Pi; dr := map(diff,r(t),t); # (a) F(r(t)); # (b) q1 := simplify( F(r(t)) . dr ) assuming t::real; # (c) q2 := Int( q1, t=a..b ); value( q2 ); Mathematica: (functions and bounds will vary): Exercises 55 and 56 use vectors in 2 dimensions Clear[x, y, t, f, r, v] f[x_, y_]:= {x y6 , 3x (x y5 2)} {a, b}={0, 21}; x[t_]:= 2 Cos[t] y[t_]:= Sin[t] r[t_]:={x[t], y[t]} v[t_]:= r'[t] integrand= f[x[t], y[t]] . v[t] //Simplify Integrate[integrand,{t, a, b}] N[%] If the integration takes too long or cannot be done, use NIntegrate to integrate numerically. This is suggested for exercises 57 - 60 that use vectors in 3 dimensions. Be certain to leave spaces between variables to be multiplied. Clear[x, y, z, t, f, r, v] f[x_, y_, z_]:= {y y z Cos[x y z], x2 x z Cos[x y z], z x y Cos[x y z]} {a, b}={0, 21}; x[t_]:= 2 Cos[t] y[t_]:= 3 Sin[t] z[t_]:= 1 r[t_]:={x[t], y[t], z[t]} v[t_]:= r'[t] integrand= f[x[t], y[t],z[t]] . v[t] //Simplify NIntegrate[integrand,{t, a, b}] 16.3 PATH INDEPENDENCE, POTENTIAL FUNCTIONS, AND CONSERVATIVE FIELDS 1.
`P `y
œxœ
`N `z
2.
`P `y
œ x cos z œ
3.
`P `y
œ 1 Á 1 œ
5.
`N `x
œ0Á1œ
6.
`P `y
œ0œ
`N `z
,
,
`M `z `N `z
œyœ ,
`N `z
`M `y `M `z
`M `z
`P `x
,
`N `x
`M `y
œzœ
œ y cos z œ
`P `x
,
`N `x
Ê Conservative œ sin z œ
Ê Not Conservative
`M `y
4.
Ê Conservative `N `x
œ 1 Á 1 œ
`M `y
Ê Not Conservative
Ê Not Conservative œ0œ
`P `x
,
`N `x
œ ex sin y œ
`M `y
Ê Conservative
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 16.3 Path Independence, Potential Functions, and Conservative Fields 7.
`f `x
`f `z
Ê 8.
`f `x
`f `y
œ 2x Ê f(xß yß z) œ x# g(yß z) Ê
`f `z
œ xe `f `x
h(z) Ê
`f `z
œ 2xe
y2z
`f `y œ y2z
`f `y
œ y sin z Ê f(xß yß z) œ xy sin z g(yß z) Ê `f `z
œ
Ê f(xß yß z) œ
z y # z#
" #
œ
y 1 x# y# `g `y
œ
z È 1 y # z#
Ê
`f `z
œ
y È 1 y # z#
`g `y
œxz Ê
œ z Ê g(yß z) œ zy h(z)
w
`g `y
`g `y
œ xey2z Ê
œ 0 Ê f(xß yß z)
w
Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ xey2z C œ x sin z
`g `y
`g `y
œ x sin z Ê
œ 0 Ê g(yß z) œ h(z)
w
`f `x
ln ay# z# b g(xß y) Ê " #
`g `x œ #
œ
ln x sec# (x y) Ê g(xß y)
ln ay# z b (x ln x x) tan (x y) h(y)
y)
Ê f(xß yß z) œ tan" (xy) g(yß z) Ê
Ê
h(z)
œ xy cos z h (z) œ xy cos z Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z)
Ê `` yf œ y# y z# sec# (x y) hw (y) œ sec# (x œ "# ln ay# z# b (x ln x x) tan (x y) C `f `x
3y# #
2z# C
w
œ (x ln x x) tan (x y) h(y) Ê f(xß yß z) œ
12.
`g `y
xey2z
h (z) œ 2xe
œ xy sin z C `f `z
œx
h(z) Ê f(xß yß z) œ x#
œ x y h (z) œ x y Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z)
w
Ê f(xß yß z) œ xy sin z h(z) Ê
11.
`f `y
3y #
#
3y# #
w
œ ey2z Ê f(xß yß z) œ xey2z g(yß z) Ê y2z
10.
œ 3y Ê g(yß z) œ
œ y z Ê f(xß yß z) œ (y z)x g(yß z) Ê
œ (y z)x zy C `f `x
`g `y
œ hw (z) œ 4z Ê h(z) œ 2z# C Ê f(xß yß z) œ x#
Ê f(xß yß z) œ (y z)x zy h(z) Ê
9.
œ
953
`f `y
y y# z#
œ
Ê hw (y) œ 0 Ê h(y) œ C Ê f(xß yß z)
x 1 x# y#
`g `y
œ
x 1 x# y#
z È1 y# z#
Ê g(yß z) œ sin" (yz) h(z) Ê f(xß yß z) œ tan" (xy) sin" (yz) h(z) hw (z) œ
y È 1 y # z#
" z
Ê hw (z) œ
" z
Ê h(z) œ ln kzk C
Ê f(xß yß z) œ tan" (xy) sin" (yz) ln kzk C 13. Let F(xß yß z) œ 2xi 2yj 2zk Ê exact; Ê
`f `x
`f `z
`P `y
`N `z
`M `P `N `M `z œ 0 œ `x , `x œ 0 œ `y `g `f # ` y œ ` y œ 2y Ê g(yß z) œ y
œ0œ
#
œ 2x Ê f(xß yß z) œ x g(yß z) Ê
œ f(2ß 3ß 6) f(!ß !ß !) œ 2# 3# (6)# œ 49
exact;
`f `x
`N `z
œxœ
œ yz Ê f(xß yß z) œ xyz g(yß z) Ê
œ xyz h(z) Ê Ê
`P `y
Ð3ß5ß0Ñ
'Ð1ß1ß2Ñ
`f `z
w
,
`f `y
`M `z
œyœ
œ xz
`g `y
`P `x
,
`N `x
œzœ
œ xz Ê
`g `y
h(z) Ê f(xß yß z) œ x# y# œ h(z)
'Ð0Ð2ß0ß3ß0ßÑ 6Ñ 2x dx 2y dy 2z dz
œ hw (z) œ 2z Ê h(z) œ z# C Ê f(xß yß z) œ x# y# z# C Ê
14. Let F(xß yß z) œ yzi xzj xyk Ê
Ê M dx N dy P dz is
,
`M `y
Ê M dx N dy P dz is
œ 0 Ê g(yß z) œ h(z) Ê f(xß yß z)
w
œ xy h (z) œ xy Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ xyz C
yz dx xz dy xy dz œ f(3ß 5ß 0) f(1ß 1ß 2) œ 0 2 œ 2
15. Let F(xß yß z) œ 2xyi ax# z# b j 2yzk Ê Ê M dx N dy P dz is exact;
`f `x
`P `y
œ 2z œ
`N `z
,
`M `z
œ0œ
`P `x
œ 2xy Ê f(xß yß z) œ x# y g(yß z) Ê
Ê g(yß z) œ yz# h(z) Ê f(xß yß z) œ x# y yz# h(z) Ê
`f `z
,
`N `x
`f `y w
œ 2x œ
œ x#
`g `y
`M `y
œ x# z# Ê
`g `y
œ z#
œ 2yz h (z) œ 2yz Ê hw (z) œ 0 Ê h(z) œ C
Ê f(xß yß z) œ x# y yz# C Ê 'Ð0ß0ß0Ñ 2xy dx ax# z# b dy 2yz dz œ f("ß #ß $) f(!ß !ß !) œ 2 2(3)# œ 16 Ð1ß2ß3Ñ
16. Let F(xß yß z) œ 2xi y# j ˆ 1 4 z# ‰ k Ê Ê M dx N dy P dz is exact;
`f `x
`P `y
œ0œ
`N `z
,
`M `z
œ0œ
`P `x
,
`N `x
œ 2x Ê f(xß yß z) œ x# g(yß z) Ê
œ0œ `f `y
œ
`M `y
`g `y
$
œ y# Ê g(yß z) œ y3 h(z)
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
954
Chapter 16 Integration in Vector Fields Ê f(xß yß z) œ x#
y$ 3
`f `z
h(z) Ê
œ hw (z) œ 1 4 z# Ê h(z) œ 4 tan" z C Ê f(xß yß z)
œ x#
y$ 3
4 tan" z C Ê 'Ð0ß0ß0Ñ 2x dx y# dy
œ ˆ9
27 3
4 † 14 ‰ (! ! 0) œ 1
Ð3ß3ß1Ñ
17. Let F(xß yß z) œ (sin y cos x)i (cos y sin x)j k Ê Ê M dx N dy P dz is exact; `g `y
œ cos y sin x Ê
`f `x
4 1 z#
`P `y
dz œ f(3ß 3ß 1) f(!ß !ß !)
œ0œ
`N `z
`M `z
,
`P `x
œ0œ
,
`N `x
œ cos y cos x œ `f `y
œ sin y cos x Ê f(xß yß z) œ sin y sin x g(yß z) Ê `f `z
œ 0 Ê g(yß z) œ h(z) Ê f(xß yß z) œ sin y sin x h(z) Ê
`M `y
œ cos y sin x
`g `y
œ hw (z) œ 1 Ê h(z) œ z C
Ê f(xß yß z) œ sin y sin x z C Ê 'Ð1ß0ß0Ñ sin y cos x dx cos y sin x dy dz œ f(0ß 1ß 1) f(1ß !ß !) Ð0ß1ß1Ñ
œ (0 1) (0 0) œ 1 18. Let F(xß yß z) œ (2 cos y)i Š "y 2x sin y‹ j ˆ "z ‰ k Ê Ê M dx N dy P dz is exact; " y
œ
`g `y
2x sin y Ê
" y
œ
`f `x
`P `y
`N `z
œ0œ
`M `z
,
œ0œ
`P `x
œ 2 cos y Ê f(xß yß z) œ 2x cos y g(yß z) Ê
, `f `y
`N `x
œ 2 sin y œ
œ 2x sin y `f `z
Ê g(yß z) œ ln kyk h(z) Ê f(xß yß z) œ 2x cos y ln kyk h(z) Ê
`M `y
`g `y
œ hw (z) œ
" z
Ê h(z) œ ln kzk C Ê f(xß yß z) œ 2x cos y ln kyk ln kzk C
Ê 'Ð0ß2ß1Ñ
Ð1ß1Î2ß2Ñ
2 cos y dx Š "y 2x sin y‹ dy
œ ˆ2 † 0 ln
1 #
" z
dz œ f ˆ1ß 1# ß 2‰ f(!ß #ß ")
ln 2‰ (0 † cos 2 ln 2 ln 1) œ ln #
`P `y
19. Let F(xß yß z) œ 3x# i Š zy ‹ j (2z ln y)k Ê Ê M dx N dy P dz is exact;
`f `x
œ
2z y
1 # `N `z
œ
`M `z
,
œ0œ
`P `x
`f `y
œ 3x# Ê f(xß yß z) œ x$ g(yß z) Ê
Ê f(xß yß z) œ x$ z# ln y h(z) Ê œ x$ z# ln y C Ê 'Ð1ß1ß1Ñ 3x# dx Ð1ß2ß3Ñ
`N `x
,
œ0œ
œ
`g `y
œ
`M `y z# y
Ê g(yß z) œ z# ln y h(z)
`f `z
œ 2z ln y hw (z) œ 2z ln y Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z)
z# y
dy 2z ln y dz œ f(1ß 2ß 3) f("ß "ß ")
œ (1 9 ln 2 C) (1 0 C) œ 9 ln 2 #
`P `y
20. Let F(xß yß z) œ (2x ln y yz)i Š xy xz‹ j (xy)k Ê Ê M dx N dy P dz is exact; x# y
œ
xz Ê
`g `y
`f `x
œ x œ
`N `z
,
`M `z
œ y œ
`P `x
,
`N `x
œ 2x ln y yz Ê f(xß yß z) œ x# ln y xyz g(yß z) Ê `f `z
œ 0 Ê g(yß z) œ h(z) Ê f(xß yß z) œ x# ln y xyz h(z) Ê
œ
2x y
`f `y
œ
zœ x# y
`M `y
xz
`g `y
œ xy hw (z) œ xy Ê hw (z) œ 0
Ê h(z) œ C Ê f(xß yß z) œ x# ln y xyz C Ê 'Ð1ß2ß1Ñ (2x ln y yz) dx Š xy xz‹ dy xy dz Ð2ß1ß1Ñ
#
œ f(2ß 1ß 1) f("ß 2ß 1) œ (4 ln 1 2 C) (ln 2 2 C) œ ln 2 21. Let F(xß yß z) œ Š "y ‹ i Š 1z
x y# ‹ j
Ê M dx N dy P dz is exact; Ê
`g `y
œ
" z
Ê g(yß z) œ
Ê f(xß yß z) œ
x y
y z
y z
ˆ zy# ‰ k Ê
`f `x
œ
" y
Ð2ß2ß2Ñ
" y
œ z"# œ
Ê f(xß yß z) œ
h(z) Ê f(xß yß z) œ
C Ê 'Ð1ß1ß1Ñ
`P `y
x y
dx Š 1z
y z
x y# ‹
x y
`N `z
`M `z
,
œ0œ `f `y zy#
g(yß z) Ê `f `z
h(z) Ê dy
y z#
œ
`P `x
,
`N `x
œ y1# œ
œ yx#
`g `y
œ
" z
Ê `f `x
œ
`P `y
2xi 2yj 2zk x # y # z#
œ 4yz œ 3%
2x x # y # z#
`N `z
,
`M `z
Šand let 3# œ x# y# z# Ê œ 4xz œ 3% #
`P `x #
,
`N `x
œ 4xy œ 3% #
`3 `x
dz œ f(2ß 2ß 2) f("ß 1ß 1) œ ˆ 2#
`M `y
Ê f(xß yß z) œ ln ax y z b g(yß z) Ê
œ
x 3
,
`3 `y
œ
y 3
,
`3 `z
œ 3z ‹
Ê M dx N dy P dz is exact; `f `y
œ
2y x # y # z#
x y#
hw (z) œ zy# Ê hw (z) œ 0 Ê h(z) œ C
œ0 22. Let F(xß yß z) œ
`M `y
`g `y
œ
2y x # y # z#
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
2 #
C‰ ˆ "1
" 1
C‰
Section 16.3 Path Independence, Potential Functions, and Conservative Fields Ê œ
`g `y œ 0 2z x # y # z#
`f `z
Ê g(yß z) œ h(z) Ê f(xß yß z) œ ln ax# y# z# b h(z) Ê
Ð2ß2ß2Ñ
Ê 'Ð 1ß 1ß 1Ñ
œ
955
hw (z)
2z x # y# z#
Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ ln ax# y# z# b C 2x dx 2y dy 2z dz x # y # z#
œ f(2ß 2ß 2) f("ß 1ß 1) œ ln 12 ln 3 œ ln 4
23. r œ (i j k) t(i 2j 2k) œ (1 t)i (1 2t)j (1 2t)k, 0 Ÿ t Ÿ 1 Ê dx œ dt, dy œ 2 dt, dz œ 2 dt Ð2ß3ß 1Ñ
Ê 'Ð1ß1ß1Ñ y dx x dy 4 dz œ '0 (2t 1) dt (t 1)(2 dt) 4(2) dt œ '0 (4t 5) dt œ c2t# 5td ! œ 3 1
1
24. r œ t(3j 4k), 0 Ÿ t Ÿ 1 Ê dx œ 0, dy œ 3 dt, dz œ 4 dt Ê
' 000304
Ð ß ß Ñ
Ð ß ß Ñ
"
#
x# dx yz dy Š y# ‹ dz
œ '0 a12t# b (3 dt) Š 9t# ‹ (4 dt) œ '0 54t# dt œ c18t# d ! œ 18 1
25.
`P `y
1
#
œ0œ
`N `z
,
`M `z
œ 2z œ
`P `x
,
`N `x
,
`M `z
"
`M `y
œ0œ
Ê M dx N dy P dz is exact Ê F is conservative
Ê path independence 26.
`P `y
œ ˆÈ
yz x # y# z# ‰
œ
$
`N `z
œ ˆÈ
xz $ x # y# z# ‰
œ
`P `x
,
`N `x
œ ˆÈ
xy x # y# z# ‰
$
œ
`M `y
Ê M dx N dy P dz is exact Ê F is conservative Ê path independence 27.
`P `y `f `x
œ0œ œ
2x y
`N `z
,
œ0œ
Ê f(xß y) œ
Ê f(xß y) œ 28.
`M `z
x# y
" y
`N `z
,
`M `z
#
x y
`P `x
`N `x
,
œ 2x y# œ
œ xy# gw (y) œ
C Ê F œ ™ Šx `P `x
`N `x
#
œ cos z œ
`f `x
œ ex ln y Ê f(xß yß z) œ ex ln y g(yß z) Ê
,
œ
ex y
1 x# y#
" y#
Ê gw (y) œ
Ê g(y) œ "y C
1 y ‹
`P `y
œ0œ
Ê F is conservative Ê there exists an f so that F œ ™ f;
#
`f `y
g(y) Ê
`M `y
œ
`M `y
Ê F is conservative Ê there exists an f so that F œ ™ f; `f `y
œ
ex y
œ y sin z h(z) Ê f(xß yß z) œ e ln y y sin z h(z) Ê x
`g ex `y œ y `f `z œ y x
`g `y
sin z Ê
œ sin z Ê g(yß z)
w
cos z h (z) œ y cos z Ê hw (z) œ 0
Ê h(z) œ C Ê f(xß yß z) œ ex ln y y sin z C Ê F œ ™ ae ln y y sin zb 29.
`P `y `f `x
œ0œ
`N `z
,
`M `z
#
`P `x
œ x y Ê f(xß yß z) œ
Ê f(xß yß z) œ œ
œ0œ
" 3
x$ xy
" $ 3 x xy " $ z 3 y ze
(a) work œ 'A F † B
dr dt
, " 3 " 3
`N `x
œ1œ
`M `y
Ê F is conservative Ê there exists an f so that F œ ™ f; `f `y
$
x xy g(yß z) Ê
y$ h(z) Ê
œx
`g `y
œ y# x Ê
`f `z
`g `y z
œ y# Ê g(yß z) œ
" 3
y$ h(z)
œ hw (z) œ zez Ê h(z) œ zez e C Ê f(xß yß z) ez C Ê F œ ™ ˆ "3 x$ xy 3" y$ zez ez ‰
dt œ 'A F † dr œ 3" x$ xy 3" y$ zez ez ‘ Ð"ß!ß!Ñ œ ˆ 3" 0 0 e e‰ ˆ 3" 0 0 1‰ B
Ð"ß!ß"Ñ
œ1
(b) work œ 'A F † dr œ "3 x$ xy 3" y$ zez ez ‘ Ð"ß!ß!Ñ œ 1 B
Ð"ß!ß"Ñ
(c) work œ 'A F † dr œ "3 x$ xy 3" y$ zez ez ‘ Ð"ß!ß!Ñ œ 1 B
Ð"ß!ß"Ñ
Note: Since F is conservative, 'A F † dr is independent of the path from (1ß 0ß 0) to (1ß 0ß 1). B
30.
`P `y
œ xeyz xyzeyz cos y œ
that F œ ™ f;
`f `x
œe
yz
`N `z
,
`M `z
œ yeyz œ
`P `x
,
`N `x
œ zeyz œ
Ê f(xß yß z) œ xe g(yß z) Ê yz
`f `y
`M `y
œ xze
Ê g(yß z) œ z sin y h(z) Ê f(xß yß z) œ xe z sin y h(z) Ê yz
Ê F is conservative Ê there exists an f so
yz
`f `z
`g `y
œ xzeyz z cos y Ê w
`g `y
œ z cos y
œ xye sin y h (z) œ xyeyz sin y yz
Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ xeyz z sin y C Ê F œ ™ axeyz z sin yb
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
956
Chapter 16 Integration in Vector Fields
(a) work œ 'A F † dr œ cxeyz z sin yd Ð"ß!ß"Ñ B
Ð"ß1Î#ß!Ñ
œ (1 0) (1 0) œ 0
(b) work œ 'A F † dr œ cxeyz z sin yd Ð"ß!ß"Ñ B
Ð"ß1Î#ß!Ñ
(c) work œ 'A F † dr œ cxeyz z sin yd Ð"ß!ß"Ñ B
Ð"ß1Î#ß!Ñ
œ0 œ0
Note: Since F is conservative, 'A F † dr is independent of the path from (1ß 0ß 1) to ˆ1ß 1# ß 0‰ . B
31. (a) F œ ™ ax$ y# b Ê F œ 3x# y# i 2x$ yj ; let C" be the path from (1ß 1) to (0ß 0) Ê x œ t 1 and y œ t 1, 0 Ÿ t Ÿ 1 Ê F œ 3(t 1)# (t 1)# i 2(t 1)$ (t 1)j œ 3(t 1)% i 2(t 1)% j and r" œ (t 1)i (t 1)j Ê dr" œ dt i dt j Ê
'C
"
F † dr" œ '0 c3(t 1)% 2(t 1)% d dt 1
1 " œ '0 5(t 1)% dt œ c(t 1)& d ! œ 1; let C# be the path from (0ß 0) to (1ß 1) Ê x œ t and y œ t, 1 0 Ÿ t Ÿ 1 Ê F œ 3t% i 2t% j and r# œ ti tj Ê dr# œ dt i dt j Ê 'C F † dr# œ '0 a3t% 2t% b dt 1 œ '0 5t% dt œ 1
Ê 'C F † dr œ 'C F † dr" 'C "
#
#
F † dr# œ 2 Ð1ß1Ñ
(b) Since f(xß y) œ x$ y# is a potential function for F, 'Ð 1ß1Ñ F † dr œ f(1ß 1) f(1ß 1) œ 2 32.
`P `y `f `x
œ0œ
`N `z
,
`M `z
œ0œ
`P `x
,
`N `x
œ 2x sin y œ
#
œ 2x cos y Ê f(xß yß z) œ x cos y g(yß z) Ê #
Ê f(xß yß z) œ x cos y h(z) Ê (a) (b) (c) (d)
`M `y
`f `z
Ê F is conservative Ê there exists an f so that F œ ™ f; `f `y
œ x# sin y
w
`g `y
œ x# sin y Ê
`g `y
œ 0 Ê g(yß z) œ h(z)
#
œ h (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ x cos y C Ê F œ ™ ax# cos yb
'C 2x cos y dx x# sin y dy œ cx# cos yd Ð!ß"Ñ Ð"ß!Ñ œ 0 1 œ 1 'C 2x cos y dx x# sin y dy œ cx# cos yd Ð"ß!Ñ Ð"ß1Ñ œ 1 (1) œ 2 'C 2x cos y dx x# sin y dy œ cx# cos yd Ð"ß!Ñ Ð"ß!Ñ œ 1 1 œ 0 'C 2x cos y dx x# sin y dy œ cx# cos yd Ð"ß!Ñ Ð"ß!Ñ œ 1 1 œ 0
33. (a) If the differential form is exact, then all x, and
`N `x
œ
`M `y
`P `y
œ
`N `z
Ê 2ay œ cy for all y Ê 2a œ c,
`M `z
œ
`P `x
Ê 2cx œ 2cx for
Ê by œ 2ay for all y Ê b œ 2a and c œ 2a
(b) F œ ™ f Ê the differential form with a œ 1 in part (a) is exact Ê b œ 2 and c œ 2 34. F œ ™ f Ê g(xß yß z) œ 'Ð0ß0ß0Ñ F † dr œ 'Ð0ß0ß0Ñ ™ f † dr œ f(xß yß z) f(0ß 0ß 0) Ê ÐxßyßzÑ
`g `z
œ
`f `z
ÐxßyßzÑ
`g `x
œ
`f `x
0,
`g `y
œ
`f `y
0, and
0 Ê ™ g œ ™ f œ F, as claimed
35. The path will not matter; the work along any path will be the same because the field is conservative. 36. The field is not conservative, for otherwise the work would be the same along C" and C# . 37. Let the coordinates of points A and B be axA , yA , zA b and axB , yB , zB b, respectively. The force F œ ai bj ck is conservative because all the partial derivatives of M, N, and P are zero. Therefore, the potential function is fax, y, zb œ ax by cz C, and the work done by the force in moving a particle along any path from A to B is faBb faAb œ f axB , yB , zB b faxA , yA , zA b œ aaxB byB czB Cb aaxA byA czA Cb Ä œ aaxB xA b bayB yA b cazB zA b œ F † BA
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 16.4 Green's Theorem in the Plane 38. (a) Let GmM œ C Ê F œ C ’ `P `y
Ê
œ
3yzC ax# y# z# b&Î#
`f `x
œ
xC ax# y# z# b$Î# yC Ê `` gy œ ax# y# z# b$Î#
some f; œ
œ
`N `z
,
x ax# y# z# b$Î# `M `z
œ
i
y ax# y# z# b$Î#
3xzC ax# y# z# b&Î#
Ê f(xß yß z) œ
œ
,
C ax# y# z# b"Î#
0 Ê g(yß z) œ h(z) Ê
Ê h(z) œ C" Ê f(xß yß z) œ
`P `x
C ax# y# z# b"Î#
`f `z
œ
j
`N `x
œ
z ax# y# z# b$Î# 3xyC ax# y# z# b&Î#
g(yß z) Ê
`f `y
k“ `M `y
œ
œ
hw (z) œ
zC ax# y# z# b$Î#
Ê F œ ™ f for
yC ax# y# z# b$Î#
C" . Let C" œ 0 Ê f(xß yß z) œ
`g `y
zC ax# y# z# b$Î# GmM ax# y# z# b"Î#
is a potential
function for F. (b) If s is the distance of (xß yß z) from the origin, then s œ Èx# y# z# . The work done by the gravitational field F is work œ 'P F † dr œ ’ Èx#GmM “ y # z# P#
T#
"
T"
œ
GmM
s#
GmM
s"
œ GmM Š s"#
"
s" ‹ ,
as claimed.
16.4 GREEN'S THEOREM IN THE PLANE 1. M œ y œ a sin t, N œ x œ a cos t, dx œ a sin t dt, dy œ a cos t dt Ê `N `y
`M `x
œ 0,
`M `y
œ 1,
`N `x
œ 1, and
œ 0;
Equation (3):
)C M dy N dx œ '021 [(a sin t)(a cos t) (a cos t)(a sin t)] dt œ '021 0 dt œ 0;
' ' Š ``Mx ``Ny ‹ dx dy œ ' ' 0 dx dy œ 0, Flux R
R
Equation (4):
)C M dx N dy œ '021 [(a sin t)(a sin t) (a cos t)(a cos t)] dt œ '021 a# dt œ 21a# ; Èa c x
' ' Š ``Nx ``My ‹ dx dy œ ' ' ca cc a
R
#
œ 2a
ˆ 1#
1‰ #
#
#
2 dy dx œ 'ca 4Èa# x# dx œ 4 ’ x2 Èa# x# a
sin" xa “
a
ca
#
œ 2a 1, Circulation
2. M œ y œ a sin t, N œ 0, dx œ a sin t dt, dy œ a cos t dt Ê Equation (3):
a# #
)C M dy N dx œ '0
21
`M `x
œ 0,
`M `y
œ 1,
`N `x
œ 0, and
`N `y
œ 0;
#1 a# sin t cos t dt œ a# 2" sin# t‘ ! œ 0; ' ' 0 dx dy œ 0, Flux
R
21 #1 Equation (4): )C M dx N dy œ '0 aa# sin# tb dt œ a# 2t sin4 2t ‘ ! œ 1a# ; ' ' Š ``Nx ``My ‹ dx dy
œ ' ' 1 dx dy œ '0
21
R
'0
a
r dr d) œ '0 21
R
a# #
d) œ 1a# , Circulation
3. M œ 2x œ 2a cos t, N œ 3y œ 3a sin t, dx œ a sin t dt, dy œ a cos t dt Ê `N `y
`M `x
œ 2,
`M `y
`N `x
œ 0,
œ 0, and
œ 3;
Equation (3):
)C M dy N dx œ '021 [(2a cos t)(a cos t) (3a sin t)(a sin t)] dt
œ '0 a2a# cos# t 3a# sin# tb dt œ 2a# 2t 21
sin 2t ‘ #1 4 !
3a# 2t
sin 2t ‘ #1 4 !
œ 21a# 31a# œ 1a# ;
' ' Š ``Mx ``Ny ‹ œ ' ' 1 dx dy œ ' ' r dr d) œ ' a## d) œ 1a# , Flux 0 0 0 21
R
a
21
R
Equation (4):
)C M dx N dy œ '021 [(2a cos t)(a sin t) (3a sin t)(a cos t)] dt
#1 œ '0 a2a# sin t cos t 3a# sin t cos tb dt œ 5a# 12 sin# t‘ ! œ 0; ' ' 0 dx dy œ 0, Circulation 21
R
4. M œ x# y œ a$ cos# t, N œ xy# œ a$ cos t sin# t, dx œ a sin t dt, dy œ a cos t dt Ê ``Mx œ 2xy, ``My œ x2 , ``Nx œ y# , and ``Ny œ 2xy; Equation (3):
)C M dy N dx œ '021 aa% cos$ t sin t a% cos t sin$ tb œ ’ a4
%
cos% t
a% 4
sin% t“
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
#1 !
œ 0;
957
958
Chapter 16 Integration in Vector Fields
' ' Š ``Mx ``Ny ‹ dx dy œ ' ' (2xy 2xy) dx dy œ 0, Flux R
R
21 21 Equation (4): )C M dx N dy œ '0 aa% cos# t sin# t a% cos# t sin# tb dt œ '0 a2a% cos# t sin# tb dt 21 41 %1 œ '0 "# a% sin# 2t dt œ a4 '0 sin# u du œ a4 u2 sin42u ‘ ! œ 1#a ; ' ' Š ``Nx ``My ‹ dx dy œ ' ' ay# x# b dx dy %
%
R
21 a 21 œ '0 '0 r# † r dr d) œ '0 a4
%
`M `x
5. M œ x y, N œ y x Ê Circ œ ' '
%
d) œ
1 a% #
, Circulation
œ 1,
`M `y
œ 1,
`N `x
`N `y
œ 1,
R
œ 1 Ê Flux œ ' ' 2 dx dy œ '0
1
R
'01 2 dx dy œ 2;
[1 (1)] dx dy œ 0
R `M `x
6. M œ x# 4y, N œ x y# Ê
`M `y
œ 2x,
œ 4,
`N `x
œ 1,
`N `y
œ 2y Ê Flux œ ' ' (2x 2y) dx dy R
1 1 1 1 " " œ '0 '0 (2x 2y) dx dy œ '0 cx# 2xyd ! dy œ '0 (1 2y) dy œ cy y# d ! œ 2; Circ œ ' '
œ '0
1
'01 3 dx dy œ 3 `M `x
7. M œ y# x# , N œ x# y# Ê œ '0
3
œ 2x,
'0 (2x 2y) dy dx œ '0 a2x x
3
#
`M `y
œ 2y,
`N `x
#
x b dx œ
" 3
œ 2x, $ x$ ‘ !
`N `y
œ 2y Ê Flux œ ' ' (2x 2y) dx dy R
œ 9; Circ œ ' ' (2x 2y) dx dy R
3 x 3 œ '0 '0 (2x 2y) dy dx œ '0 x# dx œ 9
8. M œ x y, N œ ax# y# b Ê
`M `x
`M `y
œ 1,
œ 1,
`N `x
œ 2x,
1 x 1 œ '0 '0 (1 2y) dy dx œ '0 ax x# b dx œ "6 ; Circ œ ' '
œ '0 a2x xb dx œ 1
#
R
œ '0 œ '0
1
Èx
'x
2
`M `x
`M `y
œ y,
œ x 2y,
`N `x
œ 1,
`N `y
œ 1 Ê Flux œ ' ' ay a1bb dy dx R
' ' a1 ax 2ybb dy dx ay 1b dy dx œ '0 ˆ "# x Èx "# x4 x# ‰ dx œ 11 60 ; Circ œ
2
7 a1 x 2yb dy dx œ '0 ˆÈx x3Î2 x x# x3 x4 ‰ dx œ 60
Circ œ ' ' R
1
`M `x
œ 1,
`M `y
œ 3,
`N `x
œ 2,
`N `y
œ 1 Ê Flux œ ' ' a1 a1bb dy dx œ 0 R
È2 È2 2 x Î2 a2 3b dy dx œ 'cÈ2 'È 2 c x Î2 a1b dy dx œ È22 'cÈ2 È2 x2 dx œ 1È2 Èa
2b
a
11. M œ x3 y2 , N œ "# x4 y Ê 2
R
1 x (2x 1) dx dy œ '0 '0 (2x 1) dy dx
1
10. M œ x 3y, N œ 2x y Ê
œ '0
œ 2y Ê Flux œ ' ' (1 2y) dx dy
R
Èx
'x
`N `y
7 6
9. M œ xy y2 , N œ x y Ê 1
(1 4) dx dy
R
`M `x
œ 3x2 y2 ,
2b
`M `y
œ 2x3 y,
`N `x
œ 2x3 y,
`N `y
œ "# x4 Ê Flux œ ' ' ˆ3x2 y2 "# x4 ‰ dy dx
'xx x ˆ3x2 y2 "# x4 ‰ dy dx œ '02 ˆ3x5 72 x6 3x7 x8 ‰ dx œ 649 ; Circ œ ' ' 2
R
a2x3 y 2x3 yb dy dx œ 0
R
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 16.4 Green's Theorem in the Plane 12. M œ
x 1 y2 ,
È1 y2
œ 'c1 'È1 y2 1
`M `x
N œ tan1 y Ê 2 1 y2
1 `M 1 y2 , ` y
œ
2x y , `N a 1 y 2 b2 ` x
œ
œ 0,
`N `y
œ
Ê Flux œ ' ' Š 1 1 y2
1 1 y2
R
1 1 y2 ‹
dx dy
dx dy œ 'c1 4 1 1 y2y dx œ 41È2 41 ; Circ œ ' ' Š0 Š a12xy2yb2 ‹‹ dy dx È
1
2
R
È1 y2
y œ 'c1 'È1 y2 Š a1 2x ‹ dy dx œ 'c1 a0b dx œ 0 y 2 b2 1
1
`M `x
13. M œ x ex sin y, N œ x ex cos y Ê
Ècos 2)
1Î4
Ê Flux œ ' ' dx dy œ 'c1Î4 '0 R
œ 1 ex sin y, Î
`M `y
œ ex cos y,
1 4
1Î%
Ècos 2)
1Î4
R
R
y x
, N œ ln ax# y# b Ê
Ê Flux œ ' ' Š x#yy# R
Circ œ ' ' Š x# 2x y#
x x# y# ‹
R
`M `x
15. M œ xy, N œ y# Ê œ '0 Š 3x# 1
#
3x% # ‹
2y x# y# ‹
dx œ
`M `x
dx dy œ '0
1
dx dy œ '0
1
`M `y
œ y,
y x# y#
œ
Ê Flux œ ' ' (x sin y) dx dy œ '0 R
œ 0,
'0
1Î2
1Î2
R
`M `x
, N œ ex tan " y Ê
R
`N `y
" 1 y#
1 3cx œ 'c1 'x b 1 %
#
Ê
œ '0
'0
x$
2y x# y#
'x
#
`N `x
,
`M `y
2xy dy dx œ ' #
1
2 0 3
x
œ 6xy# ,
`N `x
"!
2 33
20. M œ 4x 2y, N œ 2x 4y Ê
dx œ `M `y
œ 2,
x dy dx œ '0 ax# x$ b dx œ 1"# `N `y
œ cos y,
œ x sin y #
#
œ 3y
" 1 y#
,
`N `y
œ
" 1 y#
`N `x
œ
ex y
#1 !
'0aÐ1
cos )Ñ
(3r sin )) r dr d)
œ 4a$ a4a$ b œ 0
Ê Circ œ ' ' ’ ey Š1 x
R
ex y ‹“
dx dy œ ' ' (1) dx dy R
œ 8xy# Ê work œ )C 2xy$ dx 4x# y# dy œ ' ' a8xy# 6xy# b dx dy R
`N `x
œ 2 Ê work œ )C (4x 2y) dx (2x 4y) dy
œ ' ' [2 (2)] dx dy œ 4 ' ' dx dy œ 4(Area of the circle) œ 4(1 † 4) œ 161 R
#
'01Î2 2 cos y dx dy œ '01Î2 1 cos y dy œ c1 sin yd 1Î# œ1 !
R
ex y
'xx 3y dy dx
1
21
œ1
œ
1 1 dy dx œ 'c1 ca3 x# b ax% 1bd dx œ 'c1 ax% x# 2b dx œ 44 15
19. M œ 2xy$ , N œ 4x# y# Ê 1
`M `y
`N `y
(x sin y) dx dy œ '0 Š 18 sin y‹ dy œ 18 ;
$
ex y
,
R
x
1Î2
œ '0 a$ (1 cos ))$ (sin )) d) œ ’ a4 (1 cos ))% “ 18. M œ y ex ln y, N œ
2x x# y#
1
dx dy œ ' ' 3y dx dy œ '0
" 1 y# ‹
21
œ
œ 2y Ê Flux œ ' ' (y 2y) dy dx œ '0
œ cos y,
Circ œ ' ' [cos y ( cos y)] dx dy œ '0
Ê Flux œ ' ' Š3y
`N `x
" #
#
`M `y
œ 0,
,
Î
1 4
#
R
`M `x
x x# y#
;
r dr d) œ ' 1Î4 ˆ "# cos 2)‰ d) œ
'12 ˆ r sinr ) ‰ r dr d) œ '01 sin ) d) œ 2;
; Circ œ ' ' x dy dx œ '0
" 5
1Î2
x 1 y#
œ
1
16. M œ sin y, N œ x cos y Ê
17. M œ 3xy
`M `y
" #
œ ex sin y
'12 ˆ r cosr ) ‰ r dr d) œ '01 cos ) d) œ 0
`N `x
œ x,
,
`N `y
œ 1 ex cos y,
r dr d) œ ' 1Î4 ˆ "# cos 2)‰ d) œ 4" sin 2)‘ 1Î% œ
Circ œ ' ' a1 ex cos y ex cos yb dx dy œ ' ' dx dy œ 'c1Î4 '0 14. M œ tan"
`N `x
R
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
959
960
Chapter 16 Integration in Vector Fields `M `y
21. M œ y# , N œ x# Ê œ '0
1
1cx
'0
œ 2y,
œ 2x Ê )C y# dx x# dy œ ' ' (2x 2y) dy dx
`N `x
R
(2x 2y) dy dx œ '0 a3x 4x 1b dx œ cx 2x# xd ! œ 1 2 1 œ 0 1
22. M œ 3y, N œ 2x Ê
`M `y
œ 3,
#
`N `x
œ 2 Ê )C 3y dx 2x dy œ ' ' a2 3b dx dy œ '0
`M `y
œ 6,
1
R
1 œ '0 sin x dx œ 2
23. M œ 6y x, N œ y 2x Ê
"
$
'0sin x a1bdy dx
œ 2 Ê )C (6y x) dx (y 2x) dy œ ' ' (2 6) dy dx
`N `x
R
œ 4(Area of the circle) œ 161 24. M œ 2x y# , N œ 2xy 3y Ê
`M `y
œ 2y,
`N `x
œ 2y Ê
)C a2x y# b dx (2xy 3y) dy œ ' ' (2y 2y) dx dy œ 0 R
25. M œ x œ a cos t, N œ y œ a sin t Ê dx œ a sin t dt, dy œ a cos t dt Ê Area œ œ
'0
21
" #
'0
21
" #
aa# cos# t a# sin# tb dt œ
'021 aab cos# t ab sin# tb dt œ "# '021 ab dt œ 1ab
" #
)C
" #
)C x dy y dx
x dy y dx
a# dt œ 1a#
26. M œ x œ a cos t, N œ y œ b sin t Ê dx œ a sin t dt, dy œ b cos t dt Ê Area œ œ
" #
)C x dy y dx 41 3 ' œ "# '0 a3 sin# t cos# tb acos# t sin# tb dt œ "# '0 a3 sin# t cos# tb dt œ 38 '0 sin# 2t dt œ 16 sin# u du 0
27. M œ x œ cos$ t, N œ y œ sin$ t Ê dx œ 3 cos# t sin t dt, dy œ 3 sin# t cos t dt Ê Area œ 21
œ
3 16
u2
21
sin 2u ‘ %1 4 !
œ
3 8
21
" #
1
28. C1 : M œ x œ t, N œ y œ 0 Ê dx œ dt, dy œ 0; C2 : M œ x œ a21 tb sina21 tb œ 21 t sin t, N œ y œ 1 cosa21 tb œ 1 cos t Ê dx œ acos t 1b dt, dy œ sin t dt Ê Area œ œ
" #
" #
)C x dy y dx œ "# )C
"
x dy y dx
" #
)C
2
x dy y dx
'021 a0bdt "# '021 ca21 t sin tbasin tb a1 cos tb acos t 1bd dt œ "# '021 a2 cos t t sin t 2 21 sin tb dt
œ 12 c3 sin t t cos t 2t 21 cos td20 1 œ 31 29. (a) M œ f(x), N œ g(y) Ê (b) M œ ky, N œ hx Ê
`M `y
`M `y
œ 0,
œ k,
`N `x
`N `x
œ 0 Ê )C f(x) dx g(y) dy œ ' ' Š ``Nx R
œh
`M `y ‹
dx dy œ ' ' 0 dx dy œ 0 R
Ê )C ky dx hx dy œ ' ' Š ``Nx ``My ‹ dx dy
œ ' ' (h k) dx dy œ (h k)(Area of the region)
R
R
30. M œ xy# , N œ x# y 2x Ê
`M `y
œ 2xy,
`N `x
œ 2xy 2 Ê )C xy# dx ax# y 2xb dy œ ' ' Š ``Nx
œ ' ' (2xy 2 2xy) dx dy œ 2 ' ' dx dy œ 2 times the area of the square R
R
R
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
`M `y ‹
dx dy
Section 16.4 Green's Theorem in the Plane
961
31. The integral is 0 for any simple closed plane curve C. The reasoning: By the tangential form of Green's Theorem, with M œ 4x$ y and N œ x% , )C 4x$ y dx x% dy œ ' ' ’ ``x ax% b
` `y
R
œ ' ' ðóóñóóò a4x$ 4x$ b dx dy œ 0.
a4x$ yb“ dx dy
R
0 32. The integral is 0 for any simple closed curve C. The reasoning: By the normal form of Green's theorem, with ` ` $ $ M œ x$ and N œ y$ , )C y$ dy x$ dx œ ' ' ”ðñò ` x ay b ï ` y ax b • dx dy œ 0.
R
0 `M `x
33. Let M œ x and N œ 0 Ê
œ 1 and
`N `y
œ0 Ê
0
)C M dy N dx œ ' ' Š ``Mx ``Ny ‹ dx dy
œ ' ' (1 0) dx dy Ê Area of R œ ' ' dx dy œ )C x dy; similarly, M œ y and N œ 0 Ê R
`N `x
R
œ 0 Ê )C M dx N dy œ ' ' Š ``Nx R
œ ' ' dx dy œ Area of R
Ê )C x dy
R
`M `y ‹
`M `y
œ 1 and
dy dx Ê )C y dx œ ' ' (0 1) dy dx Ê )C y dx R
R
34.
'ab f(x) dx œ Area of R œ )C y dx, from Exercise 33
35. Let $ (xß y) œ 1 Ê x œ
My M
' ' x $ (xßy) dA
œ 'R '
$ (xßy) dA
' ' x dA
œ 'R '
R
dA
' ' x dA
œ
Ê Ax œ ' ' x dA œ ' ' (x 0) dx dy
R
A
R
R
R
œ )C x#
dy, Ax œ ' ' x dA œ ' ' (0 x) dx dy œ ) xy dx, and Ax œ ' ' x dA œ ' ' ˆ 23 x "3 x‰ dx dy
œ)
#
#
" C 3
R
R
" 3
" #
x dy xy dx Ê
)C x
C
dy œ )C xy dx œ
#
" 3
)C x
dy xy dx œ Ax
36. If $ (xß y) œ 1, then Iy œ ' ' x# $ (xß y) dA œ ' ' x# dA œ ' ' ax# 0b dy dx œ R
R
R
R
#
R
" 3
)C
x$ dy,
' ' x# dA œ ' ' a0 x# b dy dx œ ) x# y dx, and ' ' x# dA œ ' ' ˆ 34 x# 4" x# ‰ dy dx C R
R
œ)
" C 4
37. M œ 38. M œ
`f `y
" 4
ellipse
$
" 4
#
x dy x y dx œ , N œ `` xf Ê
`M `y
" 4
œ
x# y "3 y$ , N œ x Ê " 4
)C x ` #f ` y#
`M `y
,
R
$
#
dy x y dx Ê
`N `x
œ
1 4
" 3
œ `` xf# Ê )C #
x# y# ,
`N `x
)C x
`f `y
R
$
dy œ )C x# y dx œ
dx
`f `x
œ 1 Ê Curl œ
" 4
)C
dy œ ' ' Š `` xf# #
R
`N `x
`M `y
x$ dy x# y dx œ Iy
` #f ` y# ‹
dx dy œ 0 for such curves C
œ 1 ˆ "4 x# y# ‰ 0 in the interior of the
x# y# œ 1 Ê work œ 'C F † dr œ ' ' ˆ1 4" x# y# ‰ dx dy will be maximized on the region R
R œ {(xß y) | curl F} 0 or over the region enclosed by 1 œ 2y 39. (a) ™ f œ Š x# 2x y# ‹ i Š x# y# ‹ j Ê M œ
2x x# y#
,Nœ
" 4
x# y#
2y x# y#
; since M, N are discontinuous at (0ß 0), we
compute 'C ™ f † n ds directly since Green's Theorem does not apply. Let x œ a cos t, y œ a sin t Ê dx œ a sin t dt, dy œ a cos t dt, M œ
2 a
cos t, N œ
2 a
sin t, 0 Ÿ t Ÿ 21, so 'C ™ f † n ds œ 'C M dy N dx
œ '0 ˆ 2a cos t‰aa cos tb ˆ 2a sin t‰aa sin tb ‘dt œ '0 2acos2 t sin2 tbdt œ 41. Note that this holds for any 21
21
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
962
Chapter 16 Integration in Vector Fields a 0, so 'C ™ f † n ds œ 41 for any circle C centered at a0, 0b traversed counterclockwise and 'C ™ f † n ds œ 41 if C is traversed clockwise.
(b) If K does not enclose the point (0ß 0) we may apply Green's Theorem: 'C ™ f † n ds œ 'C M dy N dx œ ' ' Š ``Mx R
`N `y ‹
dx dy œ ' ' Š ax2 y2 b2 2 ˆy 2 x 2 ‰
R
2 ˆx 2 y 2 ‰ ‹ ax2 y2 b2
dx dy œ ' ' 0 dx dy œ 0. If K does enclose the point R
(0ß 0) we proceed as follows: Choose a small enough so that the circle C centered at (0ß 0) of radius a lies entirely within K. Green's Theorem applies to the region R that lies between K and C. Thus, as before, 0 œ ' ' Š ``Mx R
`N `y ‹
dx dy
œ 'K M dy N dx 'C M dy N dx where K is traversed counterclockwise and C is traversed clockwise.
Hence by part (a) 0 œ ’ ' M dy N dx “ 41 Ê 41 œ K
'K ™ f † n ds œ œ 0
'K M dy N dx
œ 'K ™ f † n ds. We have shown:
if (0ß 0) lies inside K if (0ß 0) lies outside K
41
40. Assume a particle has a closed trajectory in R and let C" be the path Ê C" encloses a simply connected region R" Ê C" is a simple closed curve. Then the flux over R" is )C F † n ds œ 0, since the velocity vectors F are "
tangent to C" . But 0 œ )C F † n ds œ )C M dy N dx œ ' ' Š ``Mx "
"
R"
`N `y ‹
dx dy Ê Mx Ny œ 0, which is a
contradiction. Therefore, C" cannot be a closed trajectory. 41.
'gg yy
#Ð Ñ
"Ð Ñ
`N `x
dx dy œ N(g# (y)ß y) N(g" (y)ß y) Ê
'cd 'gg yy ˆ ``Nx dx‰ dy œ 'cd [N(g# (y)ß y) N(g" (y)ß y)] dy #Ð Ñ
"Ð Ñ
œ 'c N(g# (y)ß y) dy 'c N(g" (y)ß y) dy œ 'c N(g# (y)ß y) dy 'd N(g" (y)ß y) dy œ 'C N dy 'C N dy d
œ )C dy
d
Ê
)C N dy œ ' ' R
d
c
#
`N `x
"
dx dy
42. The curl of a conservative two-dimensional field is zero. The reasoning: A two-dimensional field F œ Mi Nj can be considered to be the restriction to the xy-plane of a three-dimensional field whose k component is zero, and whose i and j components are independent of z. For such a field to be conservative, we must have `N `M `N `M ` x œ ` y by the component test in Section 16.3 Ê curl F œ ` x ` y œ 0. 43-46. Example CAS commands: Maple: with( plots );#43 M := (x,y) -> 2*x-y; N := (x,y) -> x+3*y; C := x^2 + 4*y^2 = 4; implicitplot( C, x=-2..2, y=-2..2, scaling=constrained, title="#43(a) (Section 16.4)" ); curlF_k := D[1](N) - D[2](M): # (b) 'curlF_k' = curlF_k(x,y); top,bot := solve( C, y ); # (c) left,right := -2, 2; q1 := Int( Int( curlF_k(x,y), y=bot..top ), x=left..right ); value( q1 ); Mathematica: (functions and bounds will vary) The ImplicitPlot command will be useful for 43 and 44, but is not needed for 43 and 44. In 44, the equation of the line from (0, 4) to (2, 0) must be determined first.
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.
Section 16.5 Surfaces and Area
963
Clear[x, y, f]